Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi \(a,b,c\in R\)thì ta có:
\(a^2+b^2+c^2\ge2bc+2ca-2ab\)*
Ta cần chứng minh * là BĐT đúng
Từ * \(\Leftrightarrow a^2+b^2+c^2+2ab-2bc-2ca\ge0\)
\(\Leftrightarrow"a+b-c"^2\ge0\)**
BĐT ** hiển nhiên đúng với mọi a,b,c, mà các phép biến đỗi trên tương tự:
Do đó, BĐT * được chứng minh
Xảy ra đẳng thức trên khi và chỉ khi \(a+b=c\)
Mặt khác
\(a^2+b^2+c^2=\frac{5}{3}\)theo giả thiết
Mà: \(\frac{5}{3}=1\frac{2}{3}< 2\)
\(\Rightarrow a^2+b^2+c^2< 2\)***
Từ * và *** kết hợp lại ta có thể viết " kép " lại được: \(2bc+2ca-2ab\le a^2+b^2+c^2< 2\)
Suy ra: \(2bc+2ca-2ab< 2\)
Khi đó, vì abc > 0 do a,b,c ko âm nên chia cả hai vế cho bất đằng trên cho 2abc, ta được:
\(\frac{2bc+2ca-2ab}{2abc}>\frac{2}{2abc}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vậy: với a,b,c là các số thực dương thỏa mãn điểu kiện \(a^2+b^2+c^2=\frac{5}{3}\)thì ta chứng minh được: \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
P/s:....
Ta có: \(\frac{a}{2-a}\ge\frac{18a}{25}-\frac{1}{25}\Leftrightarrow25a\ge\left(18a-1\right)\left(2-a\right)\)
\(\Leftrightarrow-18a^2+37a-2-25a\le0\Leftrightarrow2\left(a-\frac{1}{3}\right)^2\ge0\)
Chứng minh tương tự rồi cộng lại ta được:
\(\frac{a}{2-a}+\frac{b}{2-b}+\frac{c}{2-c}\ge\frac{18}{25}\left(a+b+c\right)-\frac{3}{25}=\frac{3}{5}\)
Ta có đpcm
Dấu "=" xảy ra khi a=b=c=1/3
Buffalo way!
\(\Leftrightarrow\frac{7}{5}\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\le\frac{a^2+b^2+c^2}{abc}\) (đồng bậc 2 vế)
\(\Leftrightarrow7\left(bc+a\left(c-b\right)\right)\le5\left(a^2+b^2+c^2\right)\)
Ta có:\(VP-VT=5a^2+\left(b-c\right)a+5b^2+5c^2-7bc\)
\(=\frac{\left(10a+b-c\right)^2+99\left(b-\frac{69c}{99}\right)^2+\frac{560}{11}c^2}{20}\ge0\)
qed./.
Ta có:
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)
Suy ra \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:
\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)
Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy: \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)
\(\Rightarrow\) \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\) (do \(a,b,c>0\) )
nên \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
\(\Rightarrow\) \(đpcm\)
\(\frac{a^5-a^2}{a^5+b^2+c^2}+\frac{b^5-b^2}{b^5+c^2+a^2}+\frac{c^5-c^2}{c^5+a^2+b^2}\ge0\)
\(\Leftrightarrow1-\frac{a^2+b^2+c^2}{a^5+b^2+c^2}+1-\frac{a^2+b^2+c^2}{b^5+c^2+a^2}+1-\frac{a^2+b^2+c^2}{c^5+a^2+b^2}\ge0\)
\(\Leftrightarrow\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)
Áp dụng BĐT Cauchy-Schwarz ( chính là BĐT BCS) ta có:
\(\left(a^5+b^2+c^2\right)\left(\frac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow\frac{1}{a^5+b^2+c^2}\le\frac{\frac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\).Tương tự:
\(\frac{1}{b^5+a^2+c^2}\le\frac{\frac{1}{b}+a^2+c^2}{\left(a^2+b^2+c^2\right)^2};\frac{1}{c^5+a^2+b^2}\le\frac{\frac{1}{c}+a^2+b^2}{\left(a^2+b^2+c^2\right)^2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=Σ\frac{1}{a^5+b^2+c^2}\le\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2\left(a^2+b^2+c^2\right)}{\left(a^2+b^2+c^2\right)^2}\)
Cần chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) (Đúng)
Xảy ra khi \(a=b=c=1\)
-Lời giải được nhai lại từ Câu hỏi của LIVERPOOL - Toán lớp 9 - Học toán với OnlineMath