Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi nha MÌNH sai đề ở chổ \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Em có cách này không biết đúng không.Nếu sai đừng chửi e nha!Em mới lớp 7 thôi.
Từ đề bài suy ra \(0\le a;b;c\le3\Rightarrow a\left(3-a\right)\ge0\Leftrightarrow3a\ge a^2\)
Tương tự với b và c ta được:
\(K\ge\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}=P\left(a;b;c\right)\)
Đặt \(t=\frac{b+c}{2}\),ta có:
\(P\left(a;t;t\right)=\sqrt{a^2+1}+2\sqrt{t^2+1}\)
\(=P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=\sqrt{a^2+1}+2\sqrt{\frac{\left(b+c\right)^2}{4}+1}\)
Xét hiệu:
\(P\left(a;b;c\right)-P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=\left(\sqrt{b^2+1}+\sqrt{c^2+1}\right)-2\sqrt{\frac{\left(b+c\right)^2}{4}+1}\)
Áp dụng BĐT \(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\) (anh tự c/m,phải có cái này mới có dấu "=")
Suy ra \(P\left(a;b;c\right)-P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)\ge\sqrt{\left(b+c\right)^2+4}-2\sqrt{\frac{\left(b+c\right)^2+4}{4}}\)
\(=\sqrt{\left(b+c\right)^2+4}-\sqrt{\left(b+c\right)^2+4}=0\) (Khai căn cái mẫu ra)
Từ đây suy ra \(P\left(a;b;c\right)\ge P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=P\left(a;t;t\right)\)
Mặt khác,kết hợp giả thiết suy ra \(a+2t=3\Rightarrow a=3-2t\)
Do đó,ta cần tìm min của: \(P\left(3-2t;t;t\right)=\sqrt{\left(3-2t\right)^2+1}+2\sqrt{t^2+1}\)
Đến đây em bí rồi ạ,để em suy nghĩ tiếp.
Giải xong bài này ra chắc chết... "." chấm cái nhẹ hóng cao nhân!
Đặt \(a=x+y;b=y+z;c=z+x\)
Thì bài toán trở thành \(\frac{x+y}{2\left(2x+y\right)}+\frac{y+z}{2\left(2y+z\right)}+\frac{z+x}{2\left(2z+x\right)}\ge1\)
\(< =>3-\frac{x}{2\left(2x+y\right)}-\frac{y}{2\left(2y+z\right)}-\frac{z}{2\left(2z+x\right)}\ge1\)
\(< =>\frac{x}{2x+y}+\frac{y}{2y+z}+\frac{z}{2z+x}\le1\)
\(< =>\frac{2x}{2x+y}+\frac{2y}{2y+z}+\frac{2z}{2z+x}\le2\)
\(< =>3-\frac{y}{2x+y}-\frac{z}{2y+z}-\frac{x}{2z+x}\le2\)
\(< =>\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\ge1\)
Áp dụng Bất đẳng thức AM-GM dạng cộng mẫu thức ta có :
\(\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)hay \(a=b=c\)
Vậy bài toán đã được chứng minh xong
Sử dụng giả thiết a + b + c = 3, ta được: \(\frac{a^3}{3a-ab-ca+2bc}=\frac{a^3}{\left(a+b+c\right)a-ab-ca+2bc}\)\(=\frac{a^3}{a^2+2bc}\)
Tương tự ta có \(\frac{b^3}{3b-bc-ab+2ca}=\frac{b^3}{b^2+2ca}\); \(\frac{c^3}{3c-ca-bc+2ab}=\frac{c^3}{c^2+2ab}\)
Khi đó thì \(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)\(=\left(a+b+c\right)-\frac{2abc}{a^2+2bc}-\frac{2abc}{b^2+2ca}-\frac{2abc}{c^2+2ab}+3abc\)\(=3+abc\left[3-2\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)\right]\)\(\le3+abc\left[3-2.\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\right]\)(Theo BĐT Bunyakovsky dạng phân thức)\(=3+abc\left[3-2.\frac{9}{\left(a+b+c\right)^2}\right]\le3+\left(\frac{a+b+c}{3}\right)^3=4\)
Đẳng thức xảy ra khi a = b = c = 1
Tìm GTNN của P=a^7+b^7+c^7 biết a^3b^3+b^3c^3+c^3a^3>=1 - Sasu ka