\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

NV
15 tháng 6 2020

1.

TH1: nếu trong 3 số có ít nhất 1 số bằng 0, không mất tính tổng quát, giả sử đó là a \(\Rightarrow b+c=0\Rightarrow b=-c\)

\(\Rightarrow a^{2011}+b^{2011}+c^{2011}=0+b^{2011}+\left(-b\right)^{2011}=0< 2\) (thỏa mãn)

TH2: nếu cả 3 số đều khác 0 \(\Rightarrow\) trong 3 số tồn tại ít nhất 1 số âm, giả sử đó là a

\(\Rightarrow a^{2011}< 0\)

Mặt khác do \(-1\le b\le1\Rightarrow b^{2011}\le\left|b\right|^{2011}\le1\)

Tương tự: \(c^{2011}\le1\)

\(\Rightarrow a^{2011}+b^{2011}+c^{2011}\le a^{2011}+1+1\le a^{2011}+2< 2\) (đpcm)

2.

\(\Leftrightarrow\frac{2\left(x-5\right)+10}{x-5}-\frac{3}{x-1}< 2\)

\(\Leftrightarrow2+\frac{10}{x-5}-\frac{3}{x-1}< 2\Leftrightarrow\frac{10}{x-5}-\frac{3}{x-1}< 0\)

\(\Leftrightarrow\frac{10x-10-3x+15}{\left(x-5\right)\left(x-1\right)}< 0\Leftrightarrow\frac{7x+5}{\left(x-5\right)\left(x-1\right)}< 0\)

\(\Rightarrow\left[{}\begin{matrix}x< -\frac{5}{7}\\1< x< 5\end{matrix}\right.\)

16 tháng 12 2016

ta có \(\frac{x^2}{a^2}\)\(\frac{y^2}{b^2}\)+\(\frac{z^2}{c^2}\)\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

=> ( \(\frac{x^2}{a^2}\)\(\frac{y^2}{b^2}\)\(\frac{z^2}{c^2}\))( \(a^2+b^2+c^2\))= \(x^2+y^2+z^2\)

=> \(x^2\)\(\frac{\left(b^2+c^2\right)x^2}{a^2}\)\(y^2\)\(\frac{\left(a^2+c^2\right)y^2}{b^2}\)\(z^2\)\(\frac{\left(a^2+b^2\right)z^2}{c^2}\)\(x^2+y^2+z^2\)

=> \(\frac{\left(b^2+c^2\right)x^2}{a^2}\)\(\frac{\left(a^2+c^2\right)y^2}{b^2}\)\(\frac{\left(a^2+b^2\right)z^2}{c^2}\)= 0

nhận xét ...... ( tát cả đều lớn hơn hoặc = 0 nên cả tổng sẽ lớn hơn hoặc = 0)

dấu = xảy ra khi và chi khi x=y = z = 0 ( vì a,b,c khác 0)

vậy \(x^{2011}+y^{2011}+z^{2011}\)= 0 +0+0 = 0

18 tháng 2 2017

từng bước bao gồm cả lập luân luôn

a)\(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (1)

\(A=\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (có 2011 số hạng)

nếu ta trừ một vào từng số hạng được tử số giống nhau

\(A-2011=\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{4024}{2012}-1\right)\)

\(A-2011=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}=2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(A-2011+2012=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)công 2012 hai vế

\(A+1=VP=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\left(1\right)\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\left(2\right)\)

Chia cả hai vế (2) cho: \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\Rightarrow503x=2012\)

\(x=\frac{2012}{503}\)

18 tháng 2 2017

mình cố tình đặt A phân ra cho bạn dẽ hiểu: Nếu ko từ vế phải =1+2011+2012(1/2+...1/2012) =2012(1+1/2+...+1/2012) luôn không dài vậy

13 tháng 12 2018

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\Leftrightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=0\)

\(\Leftrightarrow\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)=0\)

\(\Leftrightarrow x^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

vì \(a,b,c\ne0\Rightarrow\hept{\begin{cases}\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\Rightarrow x=y=z=0\Rightarrow P=0+\frac{11}{2011}=\frac{11}{2011}\)

8 tháng 7 2016

Sửa lại nha\(\frac{19}{b}\)

8 tháng 7 2016

thay vào \(\frac{1}{a^2+b^2}\)

18 tháng 1 2016

Theo mình thì câu 2 là :

a/ b+c   + b/c+a    + c/a+b  =1

 suy ra (a+b+c) * (a/ b+c   + b/c+a    + c/a+b )   = a+b+c

suy ra a*(a+b+c)/(b+c)     +  b*(a+b+c)/(c+a)     +   c*(a+b+c)/(a+b)  = a+b+c

suy ra  a^2+a*(b+c)/b+c     +b^2 +b*(c+a)/ c+a       +c^2+c*(a+b)/a+b   =a=b+c

suy ra a^2/(b+c)      +a  +b^2/(c+a)     +b   +c^2/(a+b)      +c  =a+b+c

suy ra a^2/(b+c)      +b^2/(c+a)     +c^2/(a+b)        =a+b+c -a-b-c

suy ra  a^2/(b+c)      +b^2/(c+a)     +c^2/(a+b)  = 0

18 tháng 1 2016

em moi hoc lop bay

ma bai kho

bo tay .com .vn

9 tháng 7 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ab+ac}{abc}=2\)

\(\frac{bc+ab+ac}{a+b+c}=2\Leftrightarrow bc+ab+ac=2\left(a+b+c\right)\)

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}\)( * )

Để \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)thì \(2\left(\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}\right)=2\Leftrightarrow\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=1\)

\(\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=\frac{a^2bc+bac^2+ab^2c}{\left(abc\right)^2}=\frac{abc\left(a+b+c\right)}{\left(abc\right)^2}=\frac{a+b+c}{abc}\)

mà a + b + c = abc \(\Rightarrow\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=\frac{abc}{abc}=1\Leftrightarrow\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}=2\)

thay \(\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}=2\) vào ( * ) ta được \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2=2\left(đpcm\right)\)

9 tháng 7 2019

\(\text{Ta có: }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{bc.ac+ab.ac+ab.bc}{ab.bc.ac}\)

\(=\frac{abc.\left(a+b+c\right)}{a^2b^2c^2}=\frac{a+b+c}{abc}=1\left(\text{vì }a+b+c=abc\right)\)

\(\text{Lại có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=2\text{ vì }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\text{ từ}\left(1\right)\)

Vậy ...