K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\left(\text{ vì a+b+c khác 0}\right)\)

\(\Rightarrow a=b=c\)

\(P=\frac{a^{37}.b^3.c^{1979}}{b^{2019}}=\frac{b^{37}.b^3.b^{1979}}{b^{2019}}=\frac{b^{2019}}{b^{2019}}=1\)

17 tháng 12 2019

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Do đó: \(\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)

Thay a = b = c vào M

\(\Rightarrow M=\frac{a^{2019}+b^{2019}+c^{2019}}{a^{672}.b^{673}.c^{674}}=\frac{a^{2019}+a^{2019}+a^{2019}}{a^{672}.a^{673}.a^{674}}=\frac{3.a^{2019}}{a^{2019}}=3\)

1 tháng 8 2018

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

16 tháng 12 2018

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

27 tháng 3 2024

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

2 tháng 1 2017

2017

2 tháng 1 2017

cho mik xem cách làm đc ko

29 tháng 3 2020

Bài 1 : Giải

Lưu ý : b2 = a.c ; c2 = b.d 

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Ta có : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

=> \(M=\frac{a}{d}=\frac{1995}{2019}=\frac{1}{2}\)

Vậy M = 1/2

Bài 2 : 

Ta có : x - y cùng tính chẵn lẻ với x - y

           : y - 2 cùng tính chẵn lẻ với y  - 2 

          : 2 - x cùng tính chẵn lẻ với 2-x 

=> | x - y | + | y - 2 | + | 2 - x |  cùng tính chẵn lẻ với ( x- y ) + ( y - 2 ) + ( 2 - x ) 

    =  x -y + y - 2 + 2 - x     = 0 là 1 số chẵn 

=> | x - y | + | y - 2 | + | 2 - x | là 1 số chẵn 

=> không có x ; y ; z thỏa mãn điều kiện trên

30 tháng 3 2020

2 ở đâu ra hả bạn

1 tháng 12 2016

\(\frac{a.b}{a+b}=\frac{b.c}{b+c}=\frac{c.a}{c+a}\)

\(\Rightarrow\frac{a+b}{a.b}=\frac{b+c}{b.c}=\frac{c+a}{c.a}\) (vì a;b;c khác 0)

\(=\frac{a}{a.b}+\frac{b}{a.b}=\frac{b}{b.c}+\frac{c}{b.c}=\frac{c}{c.a}+\frac{a}{c.a}\)

\(=\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

=> a = b = c

\(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+a.a^2+a.a^2}{a^3+a^3+a^3}=\frac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)