K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2015

bai nay dai lam nhung ban cu lam theo ncac buoc sau:
b1: lấy dữ liệu đầu bài để nhận với 1 số mà bằng được với cái phải chứng minh thế là ra
b2: nhân đa thức với đa thức(tự làm)
b3:ghép các phân thức đồng dạng với nhau.
b4:kết luận

NV
25 tháng 5 2019

a/ Biến đổi tương đương:

\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)

\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)

Vậy BĐT ban đầu đúng

Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)

Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương

Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:

\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Lời giải:

\(a^2+b^2+c^2=(a+b)^2-2ab+c^2=(-c)^2-2ab+c^2=2(c^2-ab)\)

Ta xét các TH sau:

TH1: $c\geq 0$

\(a,b>-1\Rightarrow (a+1)(b+1)>0\)

\(\Leftrightarrow ab+1>-(a+b)\Leftrightarrow ab+1> c\)

\(1>c\geq 0\Rightarrow c\geq c^2\)

\(\Rightarrow ab+1>c^2\Rightarrow c^2-ab< 1\Rightarrow a^2+b^2+c^2=2(c^2-ab)< 2(1)\)

TH2: $c< 0$

Vì $a,b< 1$ \(\Rightarrow (a-1)(b-1)>0\)

\(\Leftrightarrow ab+1>a+b\Leftrightarrow ab+1> -c\)

\(-1< c< 0\Rightarrow -c>c^2\)

\(\Rightarrow ab+1>-c>c^2\Rightarrow c^2-ab< 1\Rightarrow a^2+b^2+c^2=2(c^2-ab)< 2(2)\)

Từ (1);(2) ta có đpcm.

29 tháng 3 2019

#Cách Khác#

Ta thấy :

\(a,b,c\in\left(-1;1\right)\)\(a+b+c=0\)

Theo Dirichlet \(\exists\) 2 số không âm :

Ta giả sử đó là a, b và c không dương .

Khi đó \(\left\{{}\begin{matrix}a\left(a-1\right)\le0\\b\left(b-1\right)\le0\\c\left(c+1\right)\le0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le-c\end{matrix}\right.\)\(\Rightarrow a^2+b^2+c^2\le-2c< 2\)

#Kaito#

6 tháng 6 2018

Ta có : \(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\left(1\right)\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\left(2\right)\)

\(\dfrac{c}{a+b+c}< \dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\left(3\right)\)

Cộng từng vế của ( 1;2;3 ) , ta có :

\(\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

6 tháng 6 2018

t cũng muốn k bắt lỗi you nhưng bài nào you cx có lỗi sai

13 tháng 1 2020

Ta có: \(0\le a\le b\le1.\)

\(\Rightarrow\left\{{}\begin{matrix}a-1\le0\\b-1\le0\end{matrix}\right.\)

\(\Rightarrow\left(a-1\right).\left(b-1\right)\ge0\)

\(\Rightarrow ab-a-b+1\ge0.\)

\(\Rightarrow ab+1\ge0+a+b\)

\(\Rightarrow ab+1\ge a+b\)

\(\Rightarrow\frac{1}{ab+1}\le\frac{1}{a+b}.\)

\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(c\ge0\right).\)

\(\frac{c}{a+b}\le\frac{2c}{a+b+c}\left(c\ge0\right)\)

\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\left(1\right).\)

Chứng minh tương tự ta cũng có:

\(\frac{b}{ac+1}\le\frac{2b}{a+b+c}\left(2\right);\frac{a}{bc+1}\le\frac{2a}{a+b+c}\left(3\right).\)

Cộng theo vế \(\left(1\right);\left(2\right)và\left(3\right)\) ta được:

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2.\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right).\)

Chúc bạn học tốt!

29 tháng 1 2020

Cảm ơn bạn nha!

7 tháng 1 2017

Nhìn cái đề gớm quá. Tập viết đề đi nhé b

Ta có:

\(\left(1-a^2\right)\left(1-b^2\right)\left(1-c^2\right)\ge0\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+1-a^2-b^2-c^2-a^2b^2c^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+a^2b^2c^2\le1+a^2b^2+b^2c^2+c^2a^2\)(1)

Ta có:

\(a^2+b^2+c^2+a^2b^2c^2\ge a^2+b^2+c^2\)(2)

Ta lại có

\(\hept{\begin{cases}a^2b\left(1-b\right)\ge0\\b^2c\left(1-c\right)\ge0\\c^2a\left(1-a\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2b\ge a^2b^2\\b^2c\ge b^2c^2\\c^2a\ge c^2a^2\end{cases}}\)

\(\Rightarrow a^2b+b^2c+c^2a\ge a^2b^2+b^2c^2+c^2a^2\)

\(\Rightarrow1+a^2b+b^2c+c^2a\ge1+a^2b^2+b^2c^2+c^2a^2\)(3)

Từ (1), (2), (3)

\(\Rightarrow a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)

1 tháng 2 2016

khó quá??????? vì mik chưa học đến lớp8

1 tháng 2 2016

mik chưa học lớp 8! sorry