\(\sum\dfrac{a+b}{bc+a^2}\le\sum\dfrac{1}{a}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

thay đề liên tục nhỉ

\(\sum\dfrac{1}{a}=\dfrac{\left(b^2+c^2\right)}{a\left(b^2+c^2\right)}+\dfrac{a^2+c^2}{b\left(a^2+c^2\right)}+\dfrac{b^2+a^2}{c\left(b^2+a^2\right)}\)

\(=\dfrac{b^2}{a\left(b^2+c^2\right)}+\dfrac{c^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{b\left(a^2+c^2\right)}+\dfrac{c^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{c\left(a^2+b^2\right)}+\dfrac{a^2}{c\left(a^2+b^2\right)}\)

=\(\sum\left(\dfrac{a^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{a\left(b^2+c^2\right)}\right)\ge\sum\dfrac{\left(a+b\right)^2}{b\left(a^2+c^2\right)+a\left(b^2+c^2\right)}\) cauchy shawrtz

\(=\sum\dfrac{\left(a+b\right)^2}{a^2b+bc^2+ab^2+ac^2}=\sum\dfrac{\left(a+b\right)^2}{\left(a+b\right)\left(ab+c^2\right)}\)

\(=\sum\dfrac{a+b}{ab+c^2}\)(Q.E.D)

17 tháng 8 2018

@Vũ Tiền Châu @Akai Haruma @Mysterious Person @Phùng Khánh Linh

17 tháng 8 2018

@Akai Haruma @Vũ Tiền Châu @Phùng Khánh Linh

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Hai vế không đồng bậc, không có điều kiện hay phụ số, bạn xem lại đề.

9 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\dfrac{a^2}{4a^2+2ab+2ac+bc}=\dfrac{a^2}{2a\left(a+b+c\right)+\left(2a^2+bc\right)}\)

\(\le\dfrac{1}{9}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)

\(=\dfrac{1}{9}\left(\dfrac{2a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)\(=\dfrac{1}{9}\left(\dfrac{2a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)

Suy ra BĐT cần chứng minh viết lại như sau:

\(\dfrac{1}{9}\left(\dfrac{2\left(a+b+c\right)}{a+b+c}+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ca}+\dfrac{c^2}{2c^2+ab}\right)\le\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ca}+\dfrac{c^2}{2c^2+ab}\le\dfrac{\dfrac{1}{3}}{\dfrac{1}{9}}-2=1\)

\(\Leftrightarrow\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ca}+\dfrac{2c^2}{2c^2+ab}\le2\)

\(\Leftrightarrow\left(1-\dfrac{2a^2}{2a^2+bc}\right)+\left(1-\dfrac{2b^2}{2b^2+ca}\right)+\left(1-\dfrac{2c^2}{2c^2+ab}\right)\ge1\)

\(\Leftrightarrow\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\ge1\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{bc}{bc+2a^2}=\dfrac{b^2c^2}{b^2c^2+2a^2bc}\ge\dfrac{b^2c^2}{b^2c^2+a^2\left(b^2+c^2\right)}=\dfrac{b^2c^2}{a^2b^2+b^2c^2+a^2c^2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{ca}{2b^2+ca}\ge\dfrac{c^2a^2}{a^2b^2+b^2c^2+c^2a^2};\dfrac{ab}{2c^2+ab}\ge\dfrac{a^2b^2}{a^2b^2+b^2c^2+c^2a^2}\)

Cộng theo vế 3 BĐT trên ta có:

\(\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\ge\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2+b^2c^2+c^2a^2}=1\)

Vậy BĐT cuối đúng hay ta có ĐPCM

AH
Akai Haruma
Giáo viên
25 tháng 11 2017

Lời giải:

Ta có:

\(\sum \frac{1}{a+ab}\geq \frac{3}{abc+1}\Leftrightarrow \sum \frac{abc+1}{a(b+1)}\geq 3\)

\(\Leftrightarrow \sum \frac{bc}{b+1}+\sum\frac{1}{a(b+1)}\geq 3\)

\(\Leftrightarrow \sum \frac{b(c+1)}{b+1}+\sum \frac{a+1}{a(b+1)}\geq 6\)

BĐT trên luôn đúng vì theo BĐT AM-GM thì:

\(\sum \frac{b(c+1)}{b+1}+\sum \frac{a+1}{a(b+1)}=\frac{b(c+1)}{b+1}+\frac{c(a+1)}{c+1}+\frac{a(b+1)}{a+1}+\frac{a+1}{a(b+1)}+\frac{b+1}{b(c+1)}+\frac{c+1}{c(a+1)}\)

\(\geq 6\sqrt[6]{\frac{abc(a+1)^2(b+1)^2(c+1)^2}{abc(a+1)^2(b+1)^2(c+1)^2}}=6\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c=1\)

28 tháng 2 2018

Bài này xong chưa vậy thanh niên Vũ Thu Mai

28 tháng 2 2018

t ko lam nua dau

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải tại link sau:

https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duongcmr-dfrac1a2bcdfrac1b2acdfrac1c2abledfracabc2abc.193908584039

27 tháng 5 2018

Ta có

\(\sum\dfrac{a}{a+\sqrt{2019a+bc}}=\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\)

Áp dụng AM - GM : \(b+c\ge2\sqrt{bc}\)

\(\Rightarrow\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\le\dfrac{a}{a+\sqrt{a^2+2a\sqrt{bc}+bc}}\)

\(=\sum\dfrac{a}{a+\sqrt{\left(a+\sqrt{bc}\right)^2}}=\sum\dfrac{a}{a+a+\sqrt{bc}}\)

Tự làm tiếp