\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

Đặt \(\dfrac{a}{b}=x;\dfrac{b}{c}=y;\dfrac{c}{a}=z\). Dễ thấy rằng

\(\dfrac{a+c}{b+c}=\dfrac{1+xy}{1+y}=x+\dfrac{1-x}{1+y}\)

Thiếp lập các hệ thức tương tự, bài toán trở về chứng minh với \(xyz=1\) có:

\(\dfrac{x-1}{y+1}+\dfrac{y-1}{z+1}+\dfrac{z-1}{x+1}\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(z+1\right)+\left(y^2-1\right)\left(x+1\right)+\left(z^2-1\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow x^2z+z^2y+y^2x+x^2+y^2+z^2\ge x+y+z+3\)

Áp dụng BĐT AM-GM ta có:

\(x^2z+z^2y+y^2x\ge3\sqrt[3]{\left(xyz\right)^3}=3\)

Vậy còn phải chứng minh \(x^2+y^2+z^2\ge x+y+z\)

Điều này đúng vì \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\ge x+y+z\)

2 tháng 6 2017

26 tháng 7 2018

Link: https://vn.answers.yahoo.com/question/index?qid=20100612215240AA1bp3C

26 tháng 7 2018

Câu hỏi của Hạnh Tâm Nguyễn - Toán lớp 9 | Học trực tuyến

13 tháng 7 2021

Đặt x=\sqrt{\dfrac{a}{b}},y=\sqrt{\dfrac{b}{c}},z=\sqrt{\dfrac{c}{a}}x=ba,y=cb,z=ac thì  x,y,z>0x,y,z>0 và xyz=1xyz=1 . Bất đẳng thức cần chứng minh trở thành      x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3x2+y2+z2.

Áp dụng bất đẳng thức Cô si cho 3 số dương ta có

                x^3+x^3+1^3\ge3\sqrt[3]{x^3.x^3.1^3}x3+x3+1333x3.x3.13 hay  2x^3+1\ge3x^22x3+13x2.

Tương tự, 2y^3+1\ge3y^2;2z^3+1\ge3z^22y3+13y2;2z3+13z2. Cộng theo vế các bất đẳng thức nhận được ta có            2\left(x^3+y^3+z^3\right)+3\ge2\left(x^2+y^2+z^2\right)+\left(x^2+y^2+z^2\right)2(x3+y3+z3)+32(x2+y2+z2)+(x2+y2+z2)

                                                      =2\left(x^2+y^2+z^2\right)+3\sqrt[3]{x^2y^2z^2}=2(x2+y2+z2)+33x2y2z2

  \ge2\left(x^2+y^2+z^2\right)+3\sqrt[3]{1}2(x2+y2+z2)+331

Do đó         x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3x2+y2+z2. Đẳng thức xảy ra khi và chỉ khi  

       x=y=z=1\Leftrightarrow a=b=c>0x=y=z=1a=b=c>0.

29 tháng 8 2021

x=y=z=1

Áp dụng bất đẳng thức cô si ta có, với a,b,c >0

a/bc + b/ac ≥ 2*1/c 

b/ac + c/ab ≥ 2*1/a

a/bc + c/ab ≥ 2*1/b 

Cộng từng vế của 3 bất đẳng thức trên với nhau ta được

2*(a/bc + b/ac + c/ab) ≥ 2(1/a+1/b+1/c) 

<=> đpcm

9 tháng 7 2021

 

Sử dụng bất đẳng thức Cô si cho hai số dương ta có:

                                   \dfrac{a}{bc}+\dfrac{b}{ca}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ca}}=\dfrac{2}{b}bca+cab2bca.cab=b2

Viết hai bất đẳng thức tương tự rồi cộng theo vế ba bất đẳng thức nhận được rồi chia 2 vế bất đẳng thức cho 2 ta được đpcm.

29 tháng 7 2018

\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2\ge5\sqrt[5]{\dfrac{a^{20}b^2}{b^{12}}}=5.\dfrac{a^4}{b^2}\)

\(\Rightarrow4.\dfrac{a^5}{b^3}+b^2\ge5.\dfrac{a^4}{b^2}\)

Tương tự: \(4.\dfrac{b^5}{c^3}+c^2\ge5\dfrac{b^4}{c^2};4\dfrac{c^5}{a^3}+a^2\ge5.\dfrac{c^4}{a^2}\)

\(\Rightarrow4\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)

Lại có: \(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\ge5a^2\)

\(\Rightarrow2.\dfrac{a^5}{b^3}+3b^2\ge5a^2\), tương tự: \(2.\dfrac{b^5}{c^3}+3c^2\ge5b^2;2\dfrac{c^5}{a^3}+3a^2\ge5c^2\)

\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)

\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}+4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5.\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)

\(\Rightarrow dpcm\)

25 tháng 7 2018

giả sử \(a>b>c>0\) thì ta có :

\(\dfrac{a^4}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^4}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^4}{a^2}\left(\dfrac{c}{a}-1\right)\ge\dfrac{2a^2b}{c}+\dfrac{c^5}{a^3}-\dfrac{c^4}{a^2}\)

\(\ge\dfrac{2c^4b}{a}-\dfrac{c^4}{a^2}=\dfrac{c^4}{a}\left(2b-\dfrac{1}{a}\right)>0\)

làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\)\(b>c>a\)

\(\Rightarrow\left(đpcm\right)\)

mấy câu cậu câu đăng khác bn làm tương tự nha . nếu bn lm không được thì có j mk lm luôn cho còn h mk bạn rồi :(

28 tháng 7 2018

\(\dfrac{a^3}{b^3}+\dfrac{a^3}{b^3}+1+\dfrac{b^3}{c^3}+\dfrac{b^3}{c^3}+1+\dfrac{c^3}{a^3}+\dfrac{c^3}{a^3}+1\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)

\(\Leftrightarrow2\left(\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\right)\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)-3\)

\(\ge2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)+3-3=2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)

\(\Leftrightarrow\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)

27 tháng 7 2018

giả sử \(a>b>c>0\) thì ta có :

\(\dfrac{a^2}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^2}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\ge2\dfrac{a}{b}+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\)

\(=\dfrac{2a}{b}+\dfrac{c^3}{a^3}-\dfrac{c^2}{a^2}\ge0\)

làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\)\(b>c>a\)

\(\Rightarrow\left(đpcm\right)\)

14 tháng 6 2017

Search mạng trước khi đăng nhs bn!

Cho a,b,c,d >0 .CMR: a/(b+c) + b/(c+d) + c/(d+a) + d/( a+b)? | Yahoo Hỏi & Đáp

10 tháng 10 2018

Áp dụng BĐT \(AM-GM\) ta có :

\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2\ge5\sqrt[5]{\dfrac{a^{15}b^4}{b^9}}=5\dfrac{a^3}{b}\)

\(\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+c^2+c^2\ge5\sqrt[5]{\dfrac{b^{15}c^4}{c^9}}=5\dfrac{b^3}{c}\)

\(\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+a^2+a^2\ge5\sqrt[5]{\dfrac{c^{15}a^4}{a^9}}=5\dfrac{c^3}{a}\)

Cộng từng vế của BĐT ta được :

\(3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(a^2+b^2+c^2\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)

Tiếp tục áp dụng BĐT \(AM-GM\) ta lại có :

\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\ge5\sqrt[5]{\dfrac{a^{10}b^6}{b^6}}=5a^2\)

\(\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+c^2+c^2+c^2\ge5\sqrt[5]{\dfrac{b^{10}c^6}{c^6}}=5b^2\)

\(\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+a^2+a^2+a^2\ge5\sqrt[5]{\dfrac{c^{10}a^6}{a^6}}=5c^2\)

Cộng vế theo vế ta được :

\(2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+3\left(a^2+b^2+c^2\right)\ge5\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)

\(\Rightarrow3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(a^2+b^2+c^2\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)

\(\Leftrightarrow5\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)

\(\Leftrightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\left(đpcm\right)\)

10 tháng 10 2018

Bạn có cách nào ko đụng AM- GM 5 số không ( chứng minh chắc chết ) . Thầy mình gợi ý dùng bđt phụ a^3 + b^3 >= ab(a+b)

22 tháng 3 2021

Sử dụng bất đẳng thức Cô si cho 2 số dương ta có

                 \dfrac{ab}{c}+\dfrac{bc}{a}\ge2bcab​+abc​≥2b      ;   \dfrac{bc}{a}+\dfrac{ca}{b}\ge2cabc​+bca​≥2c   ;    \dfrac{ca}{b}+\dfrac{ab}{c}\ge2abca​+cab​≥2a

Cộng theo vế 3 bất đẳng thức trên rồi chia hai vế bất đẳng thức nhận được cho 2 ta được đpcm. Đẳng thức xảy ra khi và chỉ khi  a=b=ca=b=c.

22 tháng 3 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2\sqrt{b^2}=2b\)

Tương tự : \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)\(\frac{ab}{c}+\frac{ca}{b}\ge2a\)

Cộng vế với vế các bđt trên ta được đpcm

Đẳng thức xảy ra <=> a=b=c