K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

Bạn chứng minh các công thức sau:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

Ta có:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca=-10\)

Khi đó \(P=3^3-3\left[\left(-10\right)\cdot3-11\right]\) không biết tính nhanh ntnào hết :P

26 tháng 10 2014

Ông tự ra thì ông tự giải.Đừng giải nữa anh chị ơi
 

1 tháng 6 2019

\(2a\)\(:\)\(x+y=2\)

\(\Rightarrow x^2+2xy+y^2=4\)

\(\Rightarrow x^2+y^2=4-2xy\)

\(\Rightarrow4-2xy\)nhỏ nhất 

\(\Rightarrow xy\)lớn nhất 

Mà x + y = 2 \(\Rightarrow\)x , y không thể là 2 số âm

vì ta cần xy lớn nhất nên x , y không thể khác dấu

\(\Rightarrow\)ta chỉ còn trường hợp x , y đều dương và x + y = 2 

\(\Rightarrow xy\)lớn nhất khi và chỉ khi x = 2 ; y= 0 và x = 0 ; y = 2

không chắc nữa