Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\)
\(P=\dfrac{a^4}{\sqrt{a^2\left(b^2+3\right)}}+\dfrac{b^4}{\sqrt{b^2\left(c^2+3\right)}}+\dfrac{c^4}{\sqrt{c^2\left(a^2+3\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a^2\left(b^2+3\right)}\le\dfrac{a^2+b^2+3}{2}\\\sqrt{b^2\left(c^2+3\right)}\le\dfrac{b^2+c^2+3}{2}\\\sqrt{c^2\left(a^2+3\right)}\le\dfrac{c^2+a^2+3}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}\le\dfrac{2\left(a^2+b^2+c^2\right)+3}{2}=\dfrac{9}{2}\)
\(\Rightarrow\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\ge\dfrac{2\left(a^2+b^2+c^2\right)^2}{9}=2\)
Vì \(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)
\(\Rightarrow VT\ge2\)
\(\Leftrightarrow\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\ge2\)
\(\Leftrightarrow P\ge2\)
Vậy \(P_{min}=2\)
đặt (với a, b, c > 0). Khi đó phương trình đã cho trở thành:
a = b = c = 2
Suy ra: x = 2013, y = 2014, z = 2015.
Ta có : \(\frac{a}{1+b^2}=\frac{a.\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\)
Mặt khác có : \(1+b^2\ge2b\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)
\(\Rightarrow-\frac{ab^2}{1+b^2}\ge-\frac{ab}{2}\Rightarrow a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)
Thiết lập tương tự với các phân thức còn lại ta có :
\(P\ge a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=3-\frac{3}{2}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy \(P_{min}=\frac{3}{2}\Leftrightarrow a=b=c=1\)
\(A=\frac{a\left(a+b^2\right)-ab^2}{a+b^2}+\frac{b\left(b+c^2\right)-bc^2}{b+c^2}+\frac{c\left(c+a^2\right)-ca^2}{c+a^2}\)
\(A=a+b+c-\left(\frac{ab^2}{a+b^2}+\frac{bc^2}{b+c^2}+\frac{ca^2}{c+a^2}\right)\)
\(A\ge3-\left(\frac{ab^2}{2\sqrt{ab^2}}+\frac{bc^2}{2\sqrt{bc^2}}+\frac{ca^2}{2\sqrt{ca^2}}\right)\)
\(A\ge3-\frac{1}{2}\left(\sqrt{a}.b+\sqrt{b}.c+\sqrt{c}.a\right)\)
\(A\ge3-\frac{1}{2}\left(\frac{b\left(a+1\right)}{2}+\frac{c\left(b+1\right)}{2}+\frac{a\left(c+1\right)}{2}\right)\)
\(A\ge3-\frac{1}{4}\left(ab+bc+ca+a+b+c\right)\)
\(A\ge3-\frac{1}{4}\left(3+\frac{\left(a+b+c\right)^2}{3}\right)\) \(=3-\frac{3}{2}=\frac{3}{2}\)
Min \(A=\frac{3}{2}\) \(\Leftrightarrow a=b=c=1\)
\(\frac{a^3}{\left(1-a\right)^2}+\frac{1-a}{8}+\frac{1-a}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1-a\right)^2}.\frac{\left(1-a\right)}{8}.\frac{1-a}{8}}=\frac{3a}{4}\)
Suy ra \(\frac{a^3}{1-a^2}\ge\frac{3a}{4}-\frac{\left(1-a\right)}{4}=\frac{4a-1}{4}\)
Tương tự hai BĐT còn lại rồi cộng theo vế:
\(A\ge\frac{4\left(a+b+c\right)-3}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng bất đẳng thức Bunhiacopxki :
\(\left(1^2+4^2\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)
\(\Leftrightarrow17\cdot\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)
\(\Leftrightarrow\sqrt{17}\cdot\sqrt{a^2+\frac{1}{b^2}}\ge a+\frac{4}{b}\)
Tương tự ta có :
\(\sqrt{17}\cdot\sqrt{b^2+\frac{1}{c^2}}\ge b+\frac{4}{c}\)
\(\sqrt{17}\cdot\sqrt{c^2+\frac{1}{a^2}}\ge c+\frac{4}{a}\)
Cộng theo vế của 3 bđt ta được :
\(\sqrt{17}\cdot\left(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\right)\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(\Leftrightarrow\sqrt{17}\cdot A\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
Áp dụng bất đẳng thức Cô-si :
\(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(=16a+\frac{4}{a}+16b+\frac{4}{b}+16c+\frac{4}{c}-15a-15b-15c\)
\(\ge2\sqrt{\frac{4\cdot16a}{a}}+2\sqrt{\frac{4\cdot16b}{b}}+2\sqrt{\frac{4\cdot16c}{c}}-15\left(a+b+c\right)\)
\(\ge16+16+16-15\cdot\frac{3}{2}=\frac{51}{2}\)
Do đó : \(\sqrt{17}\cdot A\ge\frac{51}{2}\)
\(\Leftrightarrow A\ge\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
\(M\le\frac{1}{4}\Sigma\frac{\left(a+b\right)^2}{b^2+c^2+c^2+a^2}\le\frac{1}{4}\Sigma\left(\frac{b^2}{b^2+c^2}+\frac{a^2}{c^2+a^2}\right)=\frac{3}{4}\)
Câu 2)
Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)
\(\Leftrightarrow9\ge4\left(ab+2\right)\)
\(\Rightarrow9\ge4ab+8\)
\(\Rightarrow1\ge4ab\)
Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )
Câu 3)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Mà \(a+b+c=1\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si
\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)
\(\Rightarrow\) ĐPCM