K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

bất đẳng thức trên tương đương: \(a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\ge6abc\)

Theo Cô-si: \(VT\ge6\sqrt[6]{\left(a^2b\right).\left(ab^2\right).\left(b^2c\right).\left(bc^2\right).\left(c^2a\right).\left(ca^2\right)}=6abc\)

Dấu "=' xảy ra khi a=b=c

15 tháng 8 2020

\(VT=\frac{b^2c^2}{bc\left(a^2+ab+bc+ca\right)}+\frac{c^2a^2}{ca\left(b^2+ab+bc+ca\right)}+\frac{a^2b^2}{ab\left(c^2+ab+bc+ca\right)}\)

ÁP DỤNG BĐT CAUCHY - SCHWARZ TA ĐƯỢC: 

=>    \(VT\ge\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+3abc\left(a+b+c\right)}\)

TA SẼ CHỨNG MINH:     \(\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+3abc\left(a+b+c\right)}\ge\frac{3}{4}\)

<=>     \(4\left(ab+bc+ca\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)+9abc\left(a+b+c\right)\)

<=>     \(4\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)+9abc\left(a+b+c\right)\)

<=.     \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

MÀ ĐÂY LẠI LÀ 1 BĐT LUÔN ĐÚNG !!!!!

=> VẬY TA CÓ ĐPCM.

DẤU "=" XẢY RA <=>     \(a=b=c\)

26 tháng 12 2019

Chuẩn hóa \(a+b+c=3\) rồi dùng hệ số bất định nha bạn.Mình nhác quá chỉ gợi ý thôi.Nếu cần thì trưa mai đi học về mình làm cho.

27 tháng 12 2019

Thấy có lời giải này hay hay nên mình copy lại nha (Trong sách Yếu tố ít nhất - Võ Quốc Bá Cẩn)

HPkRnON.png

22 tháng 9 2017

Trần Hữu Ngọc Minh bn tham khảo nha:

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{"b+c"+"a+c"+"a+b"}=\frac{a+b+c}{2."a+b+c"}\)

Xét 2 trường hợp, ta có:

\(\cdot TH1:a+b+c=0\)thì \(\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+-1+-1=-3\)

Không phụ thuộc vào các giá trị a,b,c 1:

\(\cdot TH2:a+b+c\ne0\)thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2."a+b+c"}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}\)

Không phụ thuộc vào các giá trị a,b,c 2

Từ 1 và 2 \(\Rightarrow\)đpcm

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

@Cool Kid:\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)Hay một BĐT mạnh (và đẹp:v) hơn là: \(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)Ta cần chứng...
Đọc tiếp

@Cool Kid:

\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)

Hay một BĐT mạnh (và đẹp:v) hơn là: 

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)

Ta cần chứng minh: \(VT-VP=\Sigma\frac{\left(a+b-c\right)^2\left(a-b\right)^2}{2\left(a+b\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Giả sử \(a\ge c\ge b\) và đặt \(a=b+u+v,c=b+v\)

Bất đẳng thức này đúng theo Cauchy-Schwawrz:

\(VT-VP\ge\frac{4\left(c+a-b\right)^2\left(c-a\right)^2}{4\left(a+b+c\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Last inequality is: https://imgur.com/tRsHOfr (mình không gửi ảnh được nên gửi link vậy!)

Done!

0

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh