Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chuẩn hóa \(a+b+c=3\) rồi dùng hệ số bất định nha bạn.Mình nhác quá chỉ gợi ý thôi.Nếu cần thì trưa mai đi học về mình làm cho.
Trần Hữu Ngọc Minh bn tham khảo nha:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{"b+c"+"a+c"+"a+b"}=\frac{a+b+c}{2."a+b+c"}\)
Xét 2 trường hợp, ta có:
\(\cdot TH1:a+b+c=0\)thì \(\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}}\)
Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+-1+-1=-3\)
Không phụ thuộc vào các giá trị a,b,c 1:
\(\cdot TH2:a+b+c\ne0\)thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2."a+b+c"}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)
Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}\)
Không phụ thuộc vào các giá trị a,b,c 2
Từ 1 và 2 \(\Rightarrow\)đpcm
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
bất đẳng thức trên tương đương: \(a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\ge6abc\)
Theo Cô-si: \(VT\ge6\sqrt[6]{\left(a^2b\right).\left(ab^2\right).\left(b^2c\right).\left(bc^2\right).\left(c^2a\right).\left(ca^2\right)}=6abc\)
Dấu "=' xảy ra khi a=b=c
\(VT=\frac{b^2c^2}{bc\left(a^2+ab+bc+ca\right)}+\frac{c^2a^2}{ca\left(b^2+ab+bc+ca\right)}+\frac{a^2b^2}{ab\left(c^2+ab+bc+ca\right)}\)
ÁP DỤNG BĐT CAUCHY - SCHWARZ TA ĐƯỢC:
=> \(VT\ge\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+3abc\left(a+b+c\right)}\)
TA SẼ CHỨNG MINH: \(\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+3abc\left(a+b+c\right)}\ge\frac{3}{4}\)
<=> \(4\left(ab+bc+ca\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)+9abc\left(a+b+c\right)\)
<=> \(4\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)+9abc\left(a+b+c\right)\)
<=. \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
MÀ ĐÂY LẠI LÀ 1 BĐT LUÔN ĐÚNG !!!!!
=> VẬY TA CÓ ĐPCM.
DẤU "=" XẢY RA <=> \(a=b=c\)