K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

(a+b+c)^3= a^3+b^3 +c^3 +3abc( a+b+c)

= a^3 +b^3 +c^3 + 3(a+b+c)

Th1 nếu a+b+c=0

thì a^3 + b^3 +c^3 = a+b+c

TH2 a+b+c>0

thì a^3 +b^3 +c^3 > a+b+c

28 tháng 8 2019

\(VP^2\le2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\) (1) 

\(VT^2=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)^2\ge\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)^3}{\left(a+b+c\right)^2}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^6}{27\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)\left(a+b+c\right)^3}{27}\)

\(\ge\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)\left(3\sqrt[3]{abc}\right)^3}{27}=2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge VP^2\) (2) 

Mà VT và VP đều dường nên từ (1) và (2) suy ra đpcm 

Dấu "=" xảy ra khi \(a=b=c=\sqrt[3]{2}\)

23 tháng 8 2020

Áp dụng bất đẳng thức Bunhiacopxki ta có \(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)\(=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

Theo một bất đẳng thức quen thuộc ta có \(abc\left(a+b+c\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\)

Từ đó ta được \(abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}{3}\)\(\le\frac{\left(a^2+b^2+c^2+ab+bc+ca+ab+bc+ca\right)^3}{3^4}=\frac{\left(a+b+c\right)^6}{3^4}\)

Do đó ta có \(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le\frac{\left(a+b+c\right)^6}{3^4}\)hay \(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\le\frac{\left(a+b+c\right)^3}{3^2}\)(*)

Dễ dàng chứng minh được \(a^3+b^3+c^3\ge\frac{\left(a+b+c\right)^3}{9}\)(**)

Từ (*) và (**) suy ra \(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\sqrt[3]{2}\)

27 tháng 10 2019

Xét hiệu : \(a^3+b^3-ab\left(a+b\right)=\left(a-b\right)^2\left(a+b\right)\ge0,\forall a,b>0\)

\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\)

Áp dụng BĐT AM-GM :
\(a^3+b^3+2c^3\ge ab\left(a+b\right)+2c^3\ge2\sqrt{ab\left(a+b\right).2c^3}=2\sqrt{4c^2\left(a+b\right)}\)

\(=4c\sqrt{a+b}\)

Hoàn toàn tương tự

\(a^3+2b^3+c^3\ge4b\sqrt{a+c};2a^3+b^3+c^3\ge4a\sqrt{b+c}\)

Cộng thao vế bất đẳng thức vừa thu được

\(\Rightarrow a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\sqrt[3]{2}\)

Chúc bạn học tốt !!!

23 tháng 8 2017

Bài này làm hoài :v

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:

\(VT=\frac{b^2c^2}{ab+ac}+\frac{a^2c^2}{ab+bc}+\frac{a^2b^2}{ac+bc}\)

\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}=VP\)

Khi a=b=c=1

2 tháng 9 2020

Đặt \(\left\{a;b;c\right\}\rightarrow\left\{\frac{1}{x};\frac{1}{y};\frac{1}{z}\right\}\)Khi đó : \(\frac{1}{x}.\frac{1}{y}.\frac{1}{z}=\frac{1}{x.y.z}=a.b.c=1< =>x.y.z=1\)

\(BĐT< =>\frac{1}{\left(\frac{1}{x}\right)^3\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\left(\frac{1}{y}\right)^3\left(\frac{1}{y}+\frac{1}{x}\right)}+\frac{1}{\left(\frac{1}{z}\right)^3\left(\frac{1}{x}+\frac{1}{y}\right)}\ge\frac{3}{2}\)

\(< =>\frac{x^3yz}{y+z}+\frac{y^3xz}{z+x}+\frac{z^3xy}{x+y}\ge\frac{3}{2}\)\(< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)(*)

Ta chỉ cần chỉ ra bất đẳng thức (*) đúng thì bài toán được giải quyết , thật vậy :

Theo bất đẳng thức Bunhiacopxki dạng phân thức :

\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\) (**)

Sử dụng bất đẳng thức AM-GM ta có : 

\(x+y+z\ge3\sqrt[3]{xyz}=3\sqrt[3]{1}=3\)Tương đương \(\frac{x+y+z}{2}\ge\frac{3}{2}\)(***)

Từ (**) và (***) ta được \(\frac{x^2}{z+y}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\ge\frac{3}{2}\)

Suy ra bất đẳng thức (*) đúng . Nên ta có điều phải chứng minh !

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

doan thi khanh linh câm cái mồm đi.đã ngu lại còn thích k

áp dụng co si ta có:

\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}\)

\(=\left(\frac{\sqrt{bc}}{\sqrt{a}}+\frac{\sqrt{ca}}{\sqrt{b}}\right)+\left(\frac{\sqrt{ca}}{\sqrt{b}}+\frac{\sqrt{ab}}{\sqrt{c}}\right)+\left(\frac{\sqrt{ab}}{\sqrt{c}}+\frac{\sqrt{bc}}{\sqrt{a}}\right)\)

\(\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

\(\Rightarrow Q.E.D\)

29 tháng 2 2020

\(VP=\frac{1}{2}\Sigma\sqrt{4\left(a^2b+a^2c\right)}\le\frac{1}{4}\Sigma\left(4+a^2b+a^2c\right)\)

\(=3+\frac{1}{4}\Sigma ab\left(a+b\right)\le3+\frac{1}{2}\left(a^3+b^3+c^3\right)\)

\(=\frac{1}{2}\left(a^3+b^3+c^3+3abc\right)\le a^3+b^3+c^3\)

Đẳng thức xảy ra khi \(a=b=c\)

28 tháng 2 2020

mình nghĩ là khi a=b

Sửa đề:  Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)

Áp dụng bđt Cauchy-Schwarz ta có:

\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)

Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

          \(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

2 tháng 7 2020

Bạn tham khảo tại đây:

Câu hỏi của Trần Hữu Ngọc Minh - Toán lớp 9 - Học toán với OnlineMath

2 tháng 7 2020

Áp dụng BĐT Cosi ta được:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)64}}=\frac{3a}{4}̸\)

Tương tự \(\hept{\begin{cases}\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{1+a}{8}+\frac{1+c}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)

Cộng theo từng vế BĐT trên ta có:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{a+b+c}{2}\)

Vì \(a+b+c\ge3\sqrt[3]{abc}=3\)do đó:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c