K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

Ta có:\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

\(\frac{\Leftrightarrow a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\) Nhân hai vế với \(\frac{1}{b-c}\)

Tương tự ta có:\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ba-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right);\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Cộng (1),(2),(3) ta được đpcm

22 tháng 3 2016

ai giai minh k cho

5 tháng 1 2020

\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}=\frac{1}{c-a}+\frac{1}{b-c}\)

Tương tự:

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a};\frac{c-a}{\left(b-c\right)\left(a-b\right)}=\frac{1}{b-c}+\frac{1}{a-b}\)

Cộng lại có đpcm

6 tháng 6 2018

\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{-a^2}{\left(a-b\right)\left(c-a\right)}+\frac{-b^2}{\left(b-c\right)\left(a-b\right)}+\frac{-c^2}{\left(b-c\right)\left(c-a\right)}\)

\(=\frac{\left(-a^2\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{\left(-b^2\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{\left(-c^2\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{-a^2b+ca^2-b^2c+ab^2-c^2a+bc^2}{-a^2b-c^2a+ca^2-b^2c+ab^2+bc^2}=1\)

Vậy \(P=1.\)

28 tháng 3 2019

Ta có

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

Tương tự

\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ab-a^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{b^2-ab+ac-c^2+c^2-bc+ab-a^2+a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(a-b\right)}\)

=0 ( ĐPCM)

23 tháng 12 2015

nguyễn quốc khánh sai r.không đủ tính thuyết phuc chung mình như vậy cũng không thể x+y+z=0=>x=y=z d

AH
Akai Haruma
Giáo viên
29 tháng 5 2020

Lời giải:

Nên bổ sung thêm điều kiện $a,b,c$ đôi một phân biệt. Đặt biểu thức cần chứng minh bằng $0$ là $P$

Ta có:

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow \left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)

\(\Leftrightarrow \frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}+\frac{b}{(b-c)(c-a)}+\frac{c}{(b-c)(a-b)}+\frac{a}{(c-a)(b-c)}+\frac{c}{(c-a)(a-b)}+\frac{a}{(a-b)(b-c)}+\frac{b}{(a-b)(c-a)}=0\)

\(\Leftrightarrow P+\frac{b(a-b)+c(c-a)+a(a-b)+c(b-c)+a(c-a)+b(b-c)}{(a-b)(b-c)(c-a)}=0\)

\(\Leftrightarrow P+\frac{0}{(a-b)(b-c)(c-a)}=0\Rightarrow P=0\) (đpcm)

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs