K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB và ΔADC có

AD chung

DB=DC

AB=AC
Do đó:ΔADB=ΔADC

b: Ta co:ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

c: Xét ΔIEB và ΔIFC có

IE=IF

\(\widehat{IEB}=\widehat{IFC}\)

EB=FC

Do đó: ΔIEB=ΔIFC

Suy ra: IB=IC

=>I nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà ADlà đường cao

nên AD là trung trực của BC(2)

Từ (1), (2) suy ra A,I,D thẳng hàng

6 tháng 12 2016

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng

24 tháng 3 2019

a, xét tam giác ADB và tam giác ADE có:

                AE=AB(gt)

               \(\widehat{EAD}\)=\(\widehat{BAD}\)(gt)

              AD cạnh chung

\(\Rightarrow\)tam giác ADB=tam giác ADE

b, gọi o là giao điểm của AD và EB

 xét tam giác AOE và tam giác AOB có:

              AE=AB(gt)

             \(\widehat{OAE}\)=\(\widehat{OAB}\)(gt)

            AO cạnh chung

\(\Rightarrow\)tam giác AOE=tam giácAOB(c.g.c)

\(\Rightarrow\)OE=OB suy ra O là trung điểm của EB(1)

\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOB}\)=90 độ(2)

từ (1) và (2) suy ra AD là đg trung trực của BE

c, vì tam giác ADB=tam giác ADE(câu a) suy ra \(\widehat{DEA}\)=\(\widehat{DBA}\)

\(\Rightarrow\)\(\widehat{DBF}\)=\(\widehat{DEC}\)

còn lại bn tự làm nhé(phần sau cx dễ)

3 tháng 5 2016

a/ Áp dụng định lí Pytago vào tam giác vuông ABC ta được:

BC^2=AB^2+AC^2=3^2+4^2=5^2

=> BC=5 cm

3 tháng 5 2016

b)c/m tam giác BAM= tam giác CDM=><ABC=<DCB mà 2 góc này là 2 góc so le trong=>AB//DC

VÌ tam giác BAM= tam giác CDM=> AB=CD

17 tháng 4 2016

mik bik bài ni đợi mik sí

17 tháng 4 2016

thui chịu tớ ko bik cách lí luận giải thì được chứ hổng có bik lí luận vs tớ mứ lp 6 ak hehe