Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K
Hình hơi xấu hì hì! tự viết GT KL nha!
Cm:
a) \(\Delta ABC\)cân tại A (gt)
=> AB=AC
=>AC=4cm (vì AB=4cm(gt))
Vậy AC=4cm.
b) \(\Delta ABC\)cân tại A (gt)
=>\(\widehat{B}=\widehat{C}\)
\(\Delta ABC\)có:\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(ĐL tổng 3 góc trong 1 tam giác)
\(\Rightarrow60^0+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{B}=\widehat{C}=60^0\)
=> \(\Delta ABC\)đều.
c) Xét \(\Delta ABM\)và \(\Delta ACM\)có:
AM chung
AB=AC
BM=CM
=>\(\Delta ABM\)=\(\Delta ACM\) (c.c.c)
(đpcm)
d) Vì \(\Delta ABM\)=\(\Delta ACM\)(cmt)
=>\(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(2 góc kề bù)
=>\(\widehat{AMB}=\widehat{AMC}=90^0\)
=> \(AM⊥BC\)(Đpcm)
e)Xét \(\Delta BHM\)và \(\Delta CKM\)có:
\(\widehat{BHM}=\widehat{CKM}=90^0\)
BM=CM
\(\widehat{B}=\widehat{C}\)
=>\(\Delta BHM\)=\(\Delta CKM\)(cạnh huyền-góc nhọn)
=>MH=MK(2 cạnh t/ứ)
(đpcm)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đo: ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>MH=MK và góc HMA=góc KMA
=>MA là phân giác của góc HMK và ΔHMK cân tại M
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
A B C M 4cm H K
a)Ta có: tam giác ABC là tam giác cân
\(=>AB=AC\)
Mà \(AB=4cm\)
=>>AC=4cm
b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)
c) Xét tam giác ABM và tgiác ACM có
AB=AC(cmt)
AM: chung
==>>tgiác ABM=tgiác ACM( ch-cgv)
d) Ta có: tam giác ABM=tgiác ACM(cmt)
=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)
Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)
\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)
=> AMvuông góc vs BC
e) Xét tgiác BMH và tgiác CMK có :
BM=CM( 2 cạnh tương ứng , cmt(a))
\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)
==>>>tgiác BMH=tgiác CMK(ch-gn)
=>MH=MK( 2 cạnh tương ứng)
xét tam giác AMB và tam giác AMC có:
MA chung
AB=AC (giả thiết)
MC=MB(M trung điểm BC)
Nên tam giác AMB=tam giác AMC(c.c.c)
b, Từ chứng minh a
=> góc MAB = góc MAC và AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ
=> góc AMB=góc AMC=180 độ :2=90 độ
Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát)
Và AM vuông góc BC ( chứng minh trên)
Và AM cắt đường vuông góc BC tại I
=> I là trọng tâm tam giác ABC
=> CI vuông góc CA
xét tam giác AMB và tam giác AMC có:
MA chung
AB=AC (giả thiết)
MC=MB(M trung điểm BC)
Nên tam giác AMB=tam giác AMC(c.c.c)
b, Từ chứng minh a
=> góc MAB = góc MAC và AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ
=> góc AMB=góc AMC=180 độ :2=90 độ
Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát)
Và AM vuông góc BC ( chứng minh trên)
Và AM cắt đường vuông góc BC tại I
=> I là trọng tâm tam giác ABC
=> CI vuông góc CA
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
A)Xét tam giác AMB và tam giác ABC có
BM=MC (gt)
AB=AC (gt)
AM là cạnh chung
Vậy tam giác AMB =tam giác MAC(c.c.c)
Vì tam giác AMB = tam giác AMC
Suy ra góc AMB=góc AMC
TA có góc AMB+góc AMC = 180 độ (2 góc kề bù)
Suy ra góc AMB= góc AMC=90 độ
Suy ra Am vuông góc với BC
1: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
2: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
3: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
4: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
hayΔAHK cân tại A