Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay 2020 = abc vào biểu thức A ta được :
\(A=\frac{2020a}{ab+2020a+2020}+\frac{b}{bc+b+2020}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{abc.a}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac+1+c}{ac+c+1}=1\)
VẬy A=1
Ta có: \(2020+c^2=ab+bc+ca+c^2=\left(b+c\right)\left(c+a\right)\)
Tương tự => \(2020+a^2=\left(a+b\right)\left(c+a\right)\)
và \(2020+b^2=\left(a+b\right)\left(b+c\right)\)
=> PT = \(\frac{a-b}{\left(b+c\right)\left(c+a\right)}+\frac{b-c}{\left(a+b\right)\left(c+a\right)}+\frac{c-a}{\left(a+b\right)\left(b+c\right)}\)
= \(\frac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) = \(\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) = 0
\(\left(a+b+c\right)^2=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow P=\frac{a^{2020}+1}{a^{2020}+a^{2020}+a^{2020}+3}=\frac{a^{2020}+1}{3\left(a^{2020}+1\right)}=\frac{1}{3}\)
\(3a^2+2b^2-7ab=0\)
\(\Leftrightarrow\left(3a^2-6ab\right)+\left(2b^2-ab\right)=0\)
\(\Leftrightarrow3a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3a-b=0\\a-2b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}b=3a\\a=2b\end{matrix}\right.\)
Thay \(b=3a\) vào P ta có :
\(P=\frac{2019a-2020.3a}{2020a+2021.3a}=\frac{-3951a}{8083a}=\frac{-3951}{8083}\)
Thay \(a=2b\) vào P ta có :
\(P=\frac{2019.2b-2020b}{2020.2b+2021b}=\frac{2018}{6061}\)
Vậy..
\(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}.\)
=> \(\frac{a^{2020}}{c^{2020}}=\frac{b^{2020}}{d^{2020}}=\frac{\left(a+b\right)^{2020}}{\left(b+d\right)^{2020}}\)
Xong lại áp dụng tính chất dãy tỉ số = nhau \(\frac{a^{2020}}{c^{2020}}=\frac{b^{2020}}{d^{2020}}=\frac{a^{2020}-b^{2020}}{c^{2020}-d^{2020}}.\)
Kết hợp lại là ra nhé
a)
\(A=\frac{2020^3+1}{2020-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020-2020+1}\) \(=2020+1=2021\)
b)
B = \(\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\) \(=2020-1=2019\)
Thông thường sẽ tính ra giá trị $T$ cụ thể nhưng bài này thì với $a,b,c$ khác nhau thì giá trị $T$ cũng khác nhau.
Bạn xem lại đề xem có gõ nhầm chỗ nào không?