Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-x+2=A+B\left(x-1\right)+C\left(x-1\right)^2\)
\(=A+Bx-B+Cx^2-2Cx+C=Cx^2-\left(2C-B\right)x+\left(A+C\right)\)
\(\hept{\begin{cases}C=1\\2C-B=1\\A+C=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}C=1\\B=1\\A=1\end{cases}}\)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
\(B=\Sigma\frac{ab}{a^2+b^2-c^2}\)
\(B=\frac{ab}{a^2+\left(b-c\right)\left(b+c\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}+\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)
\(B=\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)
\(B=\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)
\(B=\frac{b}{a+b+c-2b}+\frac{c}{a+b+c-2c}+\frac{a}{a+b+c-2a}\)
\(B=\frac{-b}{2b}+\frac{-c}{2c}+\frac{-a}{2a}\)
\(B=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}\)
\(B=\frac{-3}{2}\)
Ta có a+b+c=0
<=> a+b=-c <=>a2+b2-c2=-2ab
b+c=-a <=> b2+c2-a2=-2bc
c+a=-b <=> c2+a2-b2=-2ca
Thay vào biểu thức ta có
\(B=\frac{ab}{-2ab}-\frac{bc}{2bc}-\frac{ca}{2ca}=\frac{-3}{2}\)
Đặt \(\hept{\begin{cases}x=2b+2c-a\\y=2c+2a-b\\z=2a+2b-c\end{cases}}\)
Vì a,b,c là độ dài ba cạnh của 1 tam giác nên \(x,y,z>0\)
Khi đó :
\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)
Ta có bất đẳng thức mới theo ẩn x,y,z :
\(\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\ge1\)
\(\Leftrightarrow\frac{2}{9}\left(\frac{y}{x}+\frac{z}{x}\right)+\frac{2}{9}\left(\frac{z}{y}+\frac{x}{y}\right)+\frac{2}{9}\left(\frac{x}{z}+\frac{y}{z}\right)-\frac{1}{3}\ge1\)
\(\Leftrightarrow\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\ge1\)
Ta chứng minh bất đẳng thức phụ sau :
\(\frac{a}{b}+\frac{b}{a}\ge2\forall a,b>0\)
Thật vậy : \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)
\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)(luôn đúng \(\forall a,b>0\))
Áp dụng , ta được :
\(\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\ge1\)
\(\Leftrightarrow\frac{12}{9}-\frac{1}{3}\ge1\)
\(\Leftrightarrow\frac{9}{9}\ge1\)(đúng)
Vậy bất đẳng thức được chứng minh
ĐK: x;y;z\(\ne0\)
a + b + c = => (a + b + c)2 = 1
=> a2 + b2 + c2 + 2(ab + bc + ca) = 1
Theo đề bài lại có: a2 + b2 + c2 = 1
Do đó 2(ab + bc + ca) = 0
<=> ab + bc + ca = 0
Ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\(\Rightarrow\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ac}{xz}\) (*)
+ Nếu xy + yz + xz = 0, ta có đpcm
+ Nếu \(xy+yz+xz\ne0\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ca}{xz}=\frac{ab+bc+ca}{xy+yz+xz}=0\)\(\Rightarrow a=b=c=0\)
=> a + b + c = 0, mâu thuẫn với đề
Vậy ta có đcpm
+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)