K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn có thể tham khảo các câu hỏi tương tự

2 tháng 8 2019

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\cdot\frac{a}{b}=1\Rightarrow a=b\left(1\right)\)

\(\cdot\frac{b}{c}=1\Rightarrow b=c\left(2\right)\)

\(\cdot\frac{c}{a}=1\Rightarrow c=a\left(3\right)\)

\(\text{Từ (1);(2) và (3) suy ra }a=b=c\left(\text{ĐPCM}\right)\)

25 tháng 3 2019

a/b=8

26 tháng 3 2019

Ai biết cách làm, làm ơn ghi rõ ra dùm mik nhe. Cảm ơn nhiều trước.

3 tháng 4 2018

Giup mk vs

26 tháng 2 2017

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{a}{b+c}=\frac{1}{2}\Rightarrow\frac{b+c}{a}=2\)

\(\Rightarrow\frac{b}{a+c}=\frac{1}{2}\Rightarrow\frac{a+c}{b}=2\)

\(\Rightarrow\frac{c}{a+b}=\frac{1}{2}\Rightarrow\frac{a+b}{c}=2\)

\(\Rightarrow P=\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}=\left(\frac{a}{b}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{a}{c}+\frac{b}{c}\right)=\frac{a+c}{b}+\frac{b+c}{a}+\frac{a+b}{c}=2+2+2=6\)

1 tháng 10 2017

a)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}\)

Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(đpcm)

b)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+2=\frac{c}{d}+2\Leftrightarrow\frac{a+2b}{b}=\frac{c+2d}{d}\)(đpcm)

2 tháng 10 2017

bang@@2

18 tháng 10 2020

a) Ta có: a<b

\(\Leftrightarrow ac< bc\)

\(\Leftrightarrow ac+ab< bc+ab\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

hay \(\frac{a}{b}< \frac{a+c}{b+c}\)(đpcm)

b) Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng vế theo vế, ta được:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)

hay \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)(1)

Ta có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng vế theo vế, ta được:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+b+c+a+b}{a+b+c}=2\)(2)

Từ (1) và (2) suy ra \(1< A< 2\)

hay A không phải là số nguyên(đpcm)