Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)
Dấu "=" xay ra khi \(x=y=z\)
b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)
c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)
d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)
\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)
\(=\frac{2}{3}\left(x+y+z\right)^2=6\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))
a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx
<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )
<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0
<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )
Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z
=> ( * ) đúng
=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z
b. Xài Cauchy cho mới
( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9
<=> 3 ( x2 + y2 + z2 )\(\ge\)9
<=> x2 + y2 + z2\(\ge\)3
Dấu "=" xảy ra <=> x = y = z = 1
Vậy minA = 3 <=> x = y = z = 1
c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9
<=> xy + yz + zx\(\le\)3
Dấu "=" xảy ra <=> x = y = 1
Vậy maxB = 3 <=> x = y = 1
d. x + y + z = 3 . BP 2 vế ta được
x2 + y2 + z2 + 2( xy + yz + zx ) = 9
Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )
=> A + B \(\ge\)6
Dấu "=" xảy ra <=> x = y = z = 1
Vậy min A + B = 6 <=> x = y = z = 1
\(A=\frac{3}{a^2+b^2}+\frac{2}{ab}\)
\(=\frac{3}{a^2+b^2}+\frac{4}{2ab}\ge\frac{\left(\sqrt{3}+2\right)^2}{\left(a+b\right)^2}\)(cauchy-schwarz dạng engel)
\(=7+4\sqrt{3}\)
a) với a = -2 ta được phương trình:
3.[(-2) - 2].x + 2.(-2).(x - 1) = 4.(-2) + 3
<=> 3.(-4x) - 4.(x - 1) = (-8) + 3
<=> -12x - 4(x - 1) = -5
<=> -12x - 4x + 4 = -5
<=> -16x + 4 = -5
<=> -16x = -5 - 4
<=> -16x = -9
<=> x = 9/16
b) để x = 1, ta có:
3.(a - 2).1 + 2a(1 - 1) = 4a + 3
<=> 3(a - 2) + 0 = 4a + 3
<=> 3a - 6 = 4a + 3
<=> 3a - 6 - 4a = 3
<=> -a - 6 = 3
<=> -a = 3 + 6
<=> a = -9
M = \(\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}\)
=> M = \(\frac{\left(a^2+4\right)\left(a^2-4\right)}{\left(a^4-4a^3+4a^2\right)+\left(4a^2-16a+16\right)}\)
M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{a^2\left(a^2-4a+4\right)+4\left(a^2-4a+4\right)}\)
M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a^2-4a+4\right)}\)
M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a-2\right)^2}\)
M = \(\frac{a+2}{a-2}\)
deo giup a
cu voi