K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2015

ƯCLN (a,b) = 16 va b=96. Tìm a

theo bài ta có a chia hết cho 16 giả sử a = 16.x. và 96 chia hết cho 16= 6

suy ra 6 và x phải là hai số nguyên tố cùng nhau vậy b là các số lẻ và không chia hết cho 3

vậy x = 5; 7; 11; 13; 17; 19; 23; 25......

khi đó các giá trị của a tương ứng là a = 80; 112; 176; .......

6 tháng 8 2019

Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

=> \(\frac{bz-cy}{a}=0\)nên bz - cy = 0 => bz = cy.Hay b/y = c/z   [1]

=> \(\frac{cx-az}{b}=0\)nên cx - az = 0 => cx = az . Hay c/z = a/x [2]

Từ 1 và 2 => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

20 tháng 8 2018

giả su x =a/m , y = b/m (a,b thuoc z, m >0) va x <y. hay chung to rang neu chon z=a+b/2m thi ta co x<z <y 

giai gium minh voi. bạn viết dấu giùm mik nhé

4 tháng 2 2016

bai 1: Đặt (a, b) = d. Vì , a/b = 4/5 , mặt khác (4, 5) = 1 nên a = 4d, b = 5d. Lưu ý [a, b] = 4.5.d = 20d = 140 => d = 7 => a = 28 ; b = 35

bai2:
ta có 
72=32∗2372=32∗23
mà a,b là các số tự nhiên 
 a,b <42
Do 72 là BCNN
 a = 9k(k<5)
b=8q(q<6)
 a=18 và b=24 

4 tháng 2 2016

minh moi hok lop 6

13 tháng 6 2016

Ta có : \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)

Ta có mẫu gồm các chữ số > 0=> mẫu dương: n> 0. Nếu a > b => a - b > 0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0=>\frac{a}{b}>\frac{a+n}{b+n}\)

Nếu a < b <=> a - b < 0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}< 0=>\frac{a}{b}< \frac{a+n}{b+n}\)

Vậy đó mik nha

13 tháng 6 2016

Ta có:

\(\frac{a}{b}\)=\(\frac{a\left(b+n\right)}{b\left(b+n\right)}\)=\(\frac{ab+an}{b\left(b+n\right)}\)

\(\frac{a+n}{b+n}\)=\(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)=\(\frac{ab+bn}{b\left(b+n\right)}\)

Vì n \(\in\)N nên n có thể bằng 0.

Nếu n=0 => \(\frac{a+n}{b+n}\)=\(\frac{a+0}{b+0}\)=\(\frac{a}{b}\)

Theo đề ta có: 

   a > b => ab+an>ab+bn

=> \(\frac{a}{b}\)>\(\frac{a+n}{b+n}\)

24 tháng 6 2017

+) Quy đồng mẫu số :

\(\dfrac{a}{b}=\dfrac{a\left(b+2001\right)}{b\left(b+2001\right)}=\dfrac{ab+a2001}{b\left(b+2001\right)}\)

\(\dfrac{a+2001}{b+2001}=\dfrac{\left(a+2001\right)b}{\left(b+2001\right)b}=\dfrac{ab+2001b}{b\left(b+2001\right)}\)

\(b>0\) nên mẫu số của 2 phân số trên là số dương. Ta chỉ cần so sánh tử số thôi :

So sánh : \(ab+a2001\) với \(ab+2001b\)

+) Nếu : \(a< b\Rightarrow\dfrac{a}{b}< \dfrac{a+2001}{b+2001}\)

+) Nếu : \(a=b\Rightarrow\dfrac{a}{b}=\dfrac{a+2001}{b+2001}=1\)

+) Nếu : \(a>b\Rightarrow\dfrac{a}{b}>\dfrac{a+2001}{b+2001}\)

24 tháng 6 2017

Phạm Quỳnh Thư đó chỉ là kí tự đánh dấu cho rõ ràng dòng lỗi thôi, có cx dc ko có cx ko s

26 tháng 12 2017

A B C D M F E

a) Xét hai tam giác ABM và DCM có:

MA = MD (gt)

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)

MB = MC (gt)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)

b) Vì \(\Delta ABM=\Delta DCM\left(cmt\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CDM}\) (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong

\(\Rightarrow\) AB // DC

c) Xét hai tam giác vuông BEM và CFM có:

MB = MC (gt)

\(\widehat{BME}=\widehat{CMF}\) (đối đỉnh)

\(\Rightarrow\Delta BEM=\Delta CFM\left(ch-gn\right)\)

\(\Rightarrow\) EM = FM

Hay M là trung điểm của EF.

27 tháng 12 2017

cam on da tra loi