K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016
  • a) Ta có: a + b = 5 => a+ b2 = 25 - 2ab
  • Mặt khác: a+ b3 = 35 => (a + b)( a^2 + b^2 - ab) = 5( 25 - 2ab - ab) = 125 - 15ab = 35
  • => ab = 6

Bạn chỉ cần thay vào và làm câu b tương tự là đc nhé ^^

14 tháng 9 2017

Ngay kia minh giup

14 tháng 9 2017

ok dc lun

18 tháng 12 2016

Các cặp số cho ra kết quả a+b=5 là:0 và 5,1 và 4,2 và 3.

0^3+5^3=125(loại).1^3+4^3=65(loại)2^3+3^3=35(đúng)

Vậy a=2,b=3,a^2+b^2=2^2+3^2=13

a^4+b^4=2^4+3^4=97

                     Đáp số:a,13

                                b,97

18 tháng 12 2016

Ta co: a=2, b=3

a) a^2+b^2= 13

b) a^4+b^4= 97

2 tháng 9 2019

ta có: a + b=-2 ; a^2 + b^2 = 52

=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4

=> 52 + 2ab= 4

=> 48= -2ab

=> ab= -24

a^3 + b^3 = (a+b)( a^2-ab+ b^2)

=> a^3 + b^3 = -2.(52+24)= -2. 76= -152

4 tháng 7 2017

a. a2 +b2 = (a+b)2 - 2ab = m2 - 2n

b. a3 + b3 = (a+b)3 - 3ab(a+b) = m3 -3mn = m(m- 3n)

c. a4 + b4 = (a+b)4 - 4ab[(a+b)2 - 2ab] -16a2b2 = m4 - 4n(m2 -2n) -16n2

d. a5 + b5 = (a+b)(a4 - a3b + a2b2 - ab3 +b4) = (a+b)[ (a2 + b2)2 - a2b2 - a3b - ab3

               = (a+b)[ (a2 + b2)2 - ab( ab + a2 + b2) = (a+b)[ (a2 + b2)2 - ab(a+b)2 - a2b2 ]

               = m[ (m2 - 2n)2 - m2n - n ]

chắc đúng nhỉ ??

28 tháng 9 2018

a. Có a\(^2\) + b\(^2\) = a\(^2\) + 2ab + b\(^2\) - 2ab

\(\Rightarrow\) a\(^2\) + b\(^2\) = ( a + b ) \(^2\) - 2ab (1)

Thay a + b = 10, ab = 5 vào (1 ) ta có :

a\(^2\) + b\(^2\) = 10\(^2\) - 2 . 5 = 90

KL:.............

28 tháng 9 2018

b. Có ( a + b ) ( a\(^2\) + b\(^2\) ) = a\(^3\) + ab\(^2\) + a\(^2\)b + b\(^3\) 

\(\Rightarrow\) ( a + b ) ( a\(^2\) + b\(^2\) ) = a\(^3\) + ab ( a + b ) + b\(^3\) ( 2)

Thay a + b = 10, a\(^2\) + b \(^2\) = 90 ( CMa) , ab = (5) vào (2) ta có : 

........................

30 tháng 9 2019

 \(a+b=10\) và \(ab=4\)

1. Có: \(A=a^2+b^2=\left(a+b\right)^2-2ab=10^2-2.4=92\)

2. \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=10^3-3.4.10=880\)

3. \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=92^2-2.4^2=8432\)

4. \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)=92.880-4^2.10=80800\)