K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

Giup mình với ạ 

14 tháng 3 2023

a) Ot là tia phân giác của góc bẹt xOy

nên ˆtOx���^=ˆtOy���^=90o90� 

Xét ΔAOC và ΔDOB có OA=OD(gt)

ˆAOC���^=ˆDOB���^=90o90�(cnt)

OC=OB(gt)

Do đó ΔAOC và ΔDOB (c.g.c)⇒AC=BD

Ta có ΔAOC và ΔDOB (cmt) ⇒  ^C1�1^=^B1�1^ và ^A1�1^=^D1�1^(góc tương ứng)

Mà ^A1�1^+^C1�1^=90o90� ( vì ˆAOC���^=90o90� )⇒^C1�1^+^D1�1^=90o90� 

Gọi I là giao điểm của CA và BD . Xét ΔCID có ^C1�1^+^D1�1^=90o90� 

ˆCID���^=180o180�-(^C1�1^+^D1�1^)=90o90� 

b)M là trung điểm của AC (gt)⇒MC=MA=AC2��2 tương tự ta có NB=ND=BD2��2 mà AC=BD(cmt)⇒MC=MA=NB=ND

Xét ΔOMC và ΔONB có MC=NB(cmt)

^C1�1^=^B1�1^(cmt)

OC=OB(gt)

Do đó ΔOMC=ΔONB(c.g.c)⇒OM=ON

c) Ta có ΔOMC=ΔONB (cmt)⇒^O1�1^=^O3�3^ (góc tương ứng )

mà ^O1�1^+^O2�2^=ˆCOt���^=90o90� (gt)⇒^O2�2^+^O3�3^=90o90�hayˆMON���^=90o90� 

Gọi H là trung điểm của đoạn MN . Xét ΔMHO và ΔNHO có OH : cạnh chung , MH=NH(gt);OM=ON(cmt). Do đó ΔMHO=ΔNHO(c.c.c)⇒ˆOMH���^=ˆONH���^(góc tương ứng )

Xét ΔMON có ˆMON���^=90o90� (cmt)ˆOMH���^=ˆONH���^

Mà ˆOMH���^+ˆONH���^180o180�-ˆMON���^180o180�-90o90�=90o90� 

ˆOMN���^=ˆONM���^=45o45� 

image  
29 tháng 1 2021

mình cần câu trả lời gấp sắp toang rồi cô kiểm tra

20 tháng 1 2019

Lấy K đối xứng C qua F. Khi đó, ∆CDF = ∆KBF suy ra BK//=CD. MÀ AB =CD nên AB=BK suy ra ∆ABK cân tại B. Nên góc KBx =^xOy =2^KAB=2xOz. Suy raAK//Oz. Mà EF//ACH nên EF//Oz. Đpcm

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

15 tháng 11 2016

OA = OB (gt)

=> Tam giác OAB cân tại O có OM là đường trung tuyến (M là trung điểm của AB)

=> OM là tia phân giác của xOy (1)

OM là đường trung trực của AB

OC = OD (gt)

=> Tam giác OCD cân tại O có ON là đường trung tuyến (N là trung điểm của CD)

=> ON là tia phân giác của xOy (2)

Từ (1) và (2)

=> \(OM\equiv ON\)

=> O, M, N thẳng hàng

OM _I_ AB (OM là đường trung trực của AB)

OM _I_ CD (ON là đường trung tuyến của tam giác OCD cân tại O)

=> AB // CD

16 tháng 11 2016

Ta có hình vẽ sau:

 

 

 

 

 

 

 

O x y A C 1 2 B M N D

a) Xét ΔOAM và ΔOBM có:

OA = OB (gt)

AM = BM (gt)

OM là cạnh chung

\(\Rightarrow\) ΔOAM = ΔOBM (c.c.c)

\(\Rightarrow\) \(\widehat{O_1}\) = \(\widehat{O_2}\) (2 góc tương ứng)

Vậy OM là tia phân giác của \(\widehat{xOy}\)

 

14 tháng 11 2019

mình xin các bạn giúp với

13 tháng 2 2016

moi hok lop 6

13 tháng 2 2016

sorry em mới học lớp 6