Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) (a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
2. Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Giải
Đặt \(A=a^3b-ab^3\)
\(\Leftrightarrow A=\left(a^3b-ab\right)-\left(ab^3-ab\right)\)
\(\Leftrightarrow A=ab\left(a^2-1\right)-a\left(b^3-b\right)\)
\(\Leftrightarrow A=a\left(a-1\right)\left(a+1\right)b-ab\left(b-1\right)\left(b+1\right)\)
Do a - 1 , a , a + 1 ; b - 1 , b , b + 1 là ba số liên tiếp nên:
\(\hept{\begin{cases}\left[\left(a-1\right)a\left(a+1\right)\right]⋮6\\\left(b-1\right)b\left(b+1\right)⋮6\end{cases}}\)
\(\Rightarrow A⋮6\) hay \(\left(a^3b-ab^3\right)⋮6\left(đpcm\right)\)
bạn j ơi : \(a\left(b^3-b\right)\)là sao?
\(ab\left(b^2-b\right)\)mới đúng.
Cách 1: Nếu bạn đã học các hằng đẳng thức đáng nhớ.
\(\frac{a}{b}+\frac{b}{a}\)\(=\frac{a^2+b^2}{ab}\)
\(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\)
Vì a,b > 0 nên \(\frac{\left(a-b\right)^2}{ab}>0\)
hay \(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(>0\)
=>\(\frac{a^2+b^2}{ab}>2\)
=>\(\frac{a}{b}+\frac{b}{a}>2\)
Cách 2: nếu bạn đã học bất đẳng thức cô-si:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\ge2\sqrt{1}>2\)(theo bất đẳng thức cô-si)
a)Ta có:
S = 2 + 22 + 23 +........+ 2100
=> S = (2+23) + (22+24) +............+ (298+2100)
S = 2(1+22) + 22(1+22) +.......... + 298(1+22)
S = (1+22).(2+22+.......+298)
S=5.(2+22+.......+298) chia hết cho 5 (đpcm)
Vậy S chia hết cho 5
b) Ta có
4a+3b=4a+7b-4b=4(a-b)+7b
Vì a-b chia hết cho 7 nên 4(a-b) chia hết cho 7 và 7b chia hết cho 7(vì có 1 thừa số là 7) nên 4(a-b)+7b chia hết cho 7
=>4a+3b chia hết cho 7(đpcm)
Vậy nếu a-b chia hết cho 7 thì 4a+3b sẽ chia hết cho 7.
Bài làm:
a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)
b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)
c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)
Học tốt!!!!
1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn
+ Nếu a = b thì a + b = a + a
=> a + b = 2.a < a.b (vì b > 2)
+ Nếu a < b thì a + b < b + b
=> a + b < 2.b < a.b (vì a > 2)
+ Nếu a > b thì a + b < a + a
=> a + b < 2.a < a.b (vì b > 2)
Vậy với a,b thuộc N*; a > 2; b > 2 thì a + b < a.b (đpcm)
giả sử a là số nguyên âm(-) ; b là số nguyên dương(+)
a.b=(-).(+)=(-)
mà b là số nguyên dương(+) vì số nguyên dương lớn hơn số nguyên âm(-)
nên ab<b
giả sử a là số nguyên dương(+);blà số nguyên âm(-)
a.b=(+).(-)=(-)
mà b là số nguyên âm(-),ta biết 2 số nguyên khác dấu nhân lại thì tích sẽ nhỏ hơn các thừa số
nên a.b<b