K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

a) Ta có:

a/b=c/d

a   =c/d.b

a   =(c.b)/d

a.d=c.b

Ngược lại, ta có:

a.d=c.b

a   =(c.b)/d

a   =c/d.b

a/b=c/d

b) Ta có:

a/b>c/d

a   >c/d.b

a   >(c.b)/d

a.d>c.b

Ngược lại, ta có:

a.d>c.b

a   >(c.b)/d

a   >c/d.b

a/b>c/d

c) Ta có:

a/b

a   

a   <(c.b)/d</p>

a.d

Ngược lại, ta có:

a.d

a   <(c.b)/d</p>

a   

a/b

6 tháng 5 2021

ta có \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

...

tương tự và cộng lại \(=>M>\frac{a+b+c+d}{a+b+c+d}=1\)(1)

Lại có \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

...

tương tự và cộng lại \(=>M< \frac{a+b+b+c+c+d+d+a}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)(2)

Từ 1 và 2 = > 1<m<2 ( đpcm)

6 tháng 5 2021

nhìn vậy mà bảo chị à  D:

nghĩa là tiếp tục làm giống như vậy rồi cộng theo từng vế á

23 tháng 4 2018

Vì a/b<c/d nên a.d<c.b

=>2018.a.d<2018.c.b

=>2018.a.d+c.d<2018.c.b+c.d

=>2018a+c/2018b+d<c/d

Vậy ta đã chứng minh 2018a+c/2018b+d<c/d.

9 tháng 5 2018

Vì a/b<c/d nên a.d<c.b

=>2018.a.d<2018.c.b

=>2018.a.d+c.d<2018.c.b+c.d

=>2018a+c/2018b+d<c/d

Vậy ta đã chứng minh 2018a+c/2018b+d<c/d.

2 tháng 5 2016

Bạn viết rõ đề bài hơn 1 chút được không, trông thế này hơi khó đoán đúng đề, ko giải được