K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

Keke

\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\ge\frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\)  \(\left(i\right)\)

Đặt  \(x=\frac{1}{a};\)  \(y=\frac{2}{b};\)  và  \(z=\frac{3}{c}\)  \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{1}{x}\\b=\frac{2}{b}\\c=\frac{3}{z}\end{cases}}\)  nên   \(x,y,z>0\)

Khi đó, ta có thể biểu diễn lại bđt  \(\left(i\right)\) dưới dạng ba biến  \(x,y,z\)  như sau:

\(x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3xz}{2z+x}\) \(\left(ii\right)\)

Lúc này, ta cần phải chứng minh bđt  \(\left(ii\right)\)  luôn đúng với mọi  \(x,y,z>0\)

Thật vậy, ta có:

\(2x+y=x+x+y\ge3\sqrt[3]{x^2y}\)

\(\Rightarrow\) \(\frac{3xy}{2x+y}\le\frac{3xy}{3\left(x^2y\right)^{\frac{1}{3}}}=\left(xy^2\right)^{\frac{1}{3}}\le\frac{x+2y}{3}\)  \(\left(1\right)\)

Thiết lập các bđt còn lại theo vòng hoán vị  \(y\rightarrow z\rightarrow x\) , ta có:

\(\frac{3yz}{2y+z}\le\frac{y+2z}{3}\) \(\left(2\right);\)  \(\frac{3xz}{2z+x}\le\frac{z+2x}{3}\) \(\left(3\right)\)

Cộng từng vế ba bđt   \(\left(1\right);\)  \(\left(2\right);\)  và   \(\left(3\right)\) ta được:

\(VP\left(ii\right)\le\frac{x+2y+y+2z+z+2x}{3}=\frac{3\left(x+y+z\right)}{3}=x+y+z=VT\left(ii\right)\)

Vậy, bđt  \(\left(ii\right)\)  được chứng minh.

nên kéo theo  bđt  \(\left(i\right)\)  luôn là bđt đúng với  mọi  \(a,b,c>0\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z\) \(\Leftrightarrow\)  \(6a=3b=2c\)

bạn làm giống mình đó

4 tháng 9 2021
Chúc ngủ ngonDạo này có gì mới không?Chúc mừng sinh nhật
23 tháng 2 2019

1)a)Ta có:\(a^3-13a=a^3-a-12a=\left(a-1\right)a\left(a+1\right)-12a\)

Ta có:\(\left(a-1\right)a\left(a+1\right)⋮\)2 và 3;\(12a⋮6\)

Mà (2;3)=1\(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

\(\Rightarrow\left(a-1\right)a\left(a+1\right)-12a⋮6\left(đpcm\right)\)

b)Hình như đề sai

24 tháng 2 2019

b) Không đâu bạn, đề đúng

NV
20 tháng 3 2022

\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)

Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)

Gọi vế trái của BĐT cần chứng minh là P:

\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{1}{x^2}+8x+8x\right)+\left(\dfrac{1}{y^2}+8y+8y\right)-15\left(x+y\right)\)

\(P\ge3\sqrt[3]{\dfrac{64x^2}{x^2}}+3\sqrt[3]{\dfrac{64y^2}{y^2}}-15.1=9\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)

NV
21 tháng 1 2021

Đặt vế trái của BĐT là P:

\(P=\sqrt{\left(a+2\right)\left(b+2\right)}+\sqrt{2b.\left(a+1\right)}\)

\(P\le\dfrac{1}{2}\left(a+2+b+2\right)+\dfrac{1}{2}\left(2b+a+1\right)\)

\(P\le\dfrac{1}{2}\left(2a+3b+5\right)=\dfrac{1}{2}.2024=1012\)

Dấu "=" không xảy ra

1 tháng 4 2021

\(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\)

\(=\frac{a+c+2c}{a+b}+\frac{a+b+2b}{a+c}+\frac{2a}{b+c}\)

\(=\frac{a+c}{a+b}+\frac{2c}{a+b}+\frac{a+b}{a+c}+\frac{2b}{a+c}+\frac{2a}{b+c}\)

\(=\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)

Áp dụng bất đẳng thức AM-GM ta có :

\(\frac{a+c}{a+b}+\frac{a+b}{a+c}\ge2\sqrt{\frac{a+c}{a+b}\cdot\frac{a+b}{a+c}}=2\)

Cần chứng minh \(2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\ge3\)thì bài toán được chứng minh

tức là \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

Tuy nhiên đây là bất đẳng thức Nesbitt quen thuộc nên ta có điều phải chứng minh 

Đẳng thức xảy ra <=> a=b=c