Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : Do a ; b ; c là 3 cạnh của 1 tam giác nên :
\(\dfrac{a}{a+b+c}< \dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\)
\(\dfrac{b}{a+b+c}< \dfrac{b}{c+a}< \dfrac{2b}{a+b+c}\)
\(\dfrac{c}{a+b+c}< \dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)
Cộng 3 vế với nhau , ta có :
\(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\left(đpcm\right)\)
Ta có :
\(\dfrac{â}{b+c}>\dfrac{a}{a+b+c}\);
\(\dfrac{b}{c+a}>\dfrac{b}{a+b+c}\);
\(\dfrac{c}{a+b}>\dfrac{c}{a+b+c}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}>\dfrac{a+b+c}{a+b+c}=1\) (*)
Ta có bất đằng thức tam giác : a+b > c ; b+c > a ; a+c > b
\(\Rightarrow\dfrac{a}{b+c}< 1;\dfrac{b}{a+c}< 1;\dfrac{c}{a+b}< 1\)
Vì \(\dfrac{a}{b+c}< 1\Rightarrow\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}=\dfrac{2a}{a+b+c}\)
Tương tự :
\(\dfrac{b}{a+c}< \dfrac{2b}{a+b+c};\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\) (**)
Kết hợp (*) với (**)
=> ĐPCM
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{1+1+1}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{9}{\dfrac{4}{3}}=\dfrac{9}{12}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{2}\)
#)Giải :
Ta có : \(a^4+b^4+c^4+d^4=4abcd\)
\(\Leftrightarrow a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2a^2b^2-4abcd+2c^2d^2=0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)+2\left(ab-cd\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a^2=b^2\\c^2=d^2\\ab=cd\end{cases}}\)
Do a, b, c, d > 0
\(\Leftrightarrow a=b=c=d\left(đpcm\right)\)
Tiện tay chém trước vài bài dễ.
Bài 1:
\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)
Bài 2:
1) Thấy nó sao sao nên để tối nghĩ luôn
2)
c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi a = 0; b = 1
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt Cô Si: \(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
Tương tự,cộng theo vế và rút gọn =>đpcm
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt CÔ si
\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
.............
Ta có:
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a^3+b^3\right)+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3+3abc=0\)
\(\Rightarrow[\left(a+b\right)^3+c^3]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)[\left(a+b\right)^2-\left(a+b\right)c+c^2]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(1\right)\\a^2+b^2+c^2-ab-bc-ac=0\left(2\right)\end{cases}}\)
Từ (1) => a = b = c (vì a ; b ; c là các số dương)
Giải (2) ta có:
\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow2a^2+2b^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge\forall a,b\)
\(\left(a-c\right)^2\ge\forall a,c\)
\(\left(b-c\right)^2\ge\forall b,c\)
\(\Rightarrow\)Ta có: \(a-b=a-c=b-c\Rightarrow a=b=c\)
Bài 1:
Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)
Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.
Bài 2: 2 bài đều dùng Svac cả!
4
ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{-1}{z}\)
Ta có: \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{x^3}+3\times\dfrac{1}{x^2}\times\dfrac{1}{y}+3\times\dfrac{1}{x}\times\dfrac{1}{y^2}+\dfrac{1}{y^3}-3\times\dfrac{1}{x^2}\times\dfrac{1}{y}-3\times\dfrac{1}{x}\times\dfrac{1}{y^2}+\dfrac{1}{z^3}\) \(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3-3\times\dfrac{1}{xy}\times\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{z^3}\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\left(\dfrac{-1}{z}\right)^3-3\times\dfrac{1}{xy}\times\left(\dfrac{-1}{z}\right)+\dfrac{1}{z^3}\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-\dfrac{1}{z^3}+3\times\dfrac{1}{xyz}+\dfrac{1}{z^3}\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\Leftrightarrow xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)(ĐPCM)
a) Ta có: \(a^2-1\le0;b^2-1\le0;c^2-1\le0\)
\(\Rightarrow\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\le0\)
\(a^2+b^2+c^2\le1+a^2b^2+b^2c^2+c^2a^2-a^2b^2c^2\le1+a^2b^2+b^2c^2+c^2a^2\) ( vì \(abc\ge0\) )
Có \(b-1\le0\Rightarrow a^2b\sqrt{b}\left(b-1\right)\le0\Rightarrow a^2b^2\le a^2b\sqrt{b}\)
Tương tự: \(\hept{\begin{cases}b^2c^2\le b^2c\sqrt{c}\\c^2a^2\le c^2a\sqrt{a}\end{cases}\Rightarrow dpcm}\)
-Áp dụng BĐT Caushy Schwarz cho các cặp số dương (1,1) ở tử và (a,b) ở mẫu ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)
-Dấu "=" xảy ra khi \(a=b\).
-Hoặc có thể c/m bằng phép biến đổi tương đương:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)ab.\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}.\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
-Dấu "=" xảy ra khi \(a=b\)