Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(\frac{\sqrt{2}}{\sqrt{3}}S=\frac{\sqrt{2}}{\sqrt{3}}\sqrt{a+b}+\frac{\sqrt{2}}{\sqrt{3}}\sqrt{b+c}+\frac{\sqrt{2}}{\sqrt{3}}\sqrt{c+a}\)
\(\le\frac{\frac{2}{3}+a+b}{2}+\frac{\frac{2}{3}+b+c}{2}+\frac{\frac{2}{3}+c+a}{2}\)
\(=1+a+b+c=2\)
\(\Rightarrow S\le\frac{2}{\frac{\sqrt{2}}{\sqrt{3}}}=\sqrt{6}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
áp dụng bất đẳng thức Cô-si ta có:
\(\left(a+b\right)+\frac{2}{3}\ge2\sqrt{\frac{2}{3}\left(a+b\right)}=\sqrt{\frac{8}{3}}.\sqrt{a+b}\)
\(\left(b+c\right)+\frac{2}{3}\ge2\sqrt{\frac{2}{3}\left(b+c\right)}=\sqrt{\frac{8}{3}}.\sqrt{b+c}\)
\(\left(c+a\right)+\frac{2}{3}\ge2\sqrt{\frac{2}{3}.\left(c+a\right)}=\sqrt{\frac{8}{3}}.\sqrt{c+a}\)
\(\Rightarrow2\left(a+b+c\right)+2\ge\sqrt{\frac{8}{3}}.\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\)
\(\Rightarrow4\ge\sqrt{\frac{8}{3}}.S\Leftrightarrow S\le\sqrt{6}\)
dấu bằng xảy ra khi a=b=c
Áp dụng BĐT Bunhiacopski ta có:
\(A^2=\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1^1+1^2+1^1\right)\left(a+a+b+b+c+c+\right)=6\left(a+b+c\right)=6\)
Do đó \(A\le\sqrt{6}\)
Ta có:\(A=\sqrt{6}\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)
Vậy Amax=\(\sqrt{6}\Leftrightarrow a=b=c=\frac{1}{3}\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Có \(\sqrt{a^2+4ab+b^2}=\sqrt{\left(\frac{3}{2}a^2+3ab+\frac{3}{2}b^2\right)-\left(\frac{1}{2}a^2-ab+\frac{1}{2}b^2\right)}\)
\(=\sqrt{\frac{3}{2}\left(a+b\right)^2-\frac{1}{2}\left(a-b\right)^2}\le\sqrt{\frac{3}{2}\left(a+b\right)^2}=\sqrt{\frac{3}{2}}\left(a+b\right)\)
Tương tự, ta có : \(\sqrt{b^2+4bc+c^2}\le\sqrt{\frac{3}{2}}\left(b+c\right);\sqrt{c^2+4ca+a^2}\le\sqrt{\frac{3}{2}}\left(c+a\right)\)
\(\Rightarrow\)\(S\le\sqrt{\frac{3}{2}}\left(a+b\right)+\sqrt{\frac{3}{2}}\left(b+c\right)+\sqrt{\frac{3}{2}}\left(c+a\right)=\sqrt{\frac{3}{2}}.2\left(a+b+c\right)=6\sqrt{6}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=2\)
Ez to prove \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)
\(\Leftrightarrow\frac{6054}{3}\ge ab+bc+ca\Leftrightarrow ab+ca+bc\le2018\)
Khi đó: \(\frac{2a}{\sqrt{a^2+2018}}\le\frac{2a}{\sqrt{a^2+ab+bc+ca}}=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+b}+\frac{a}{a+c}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=3\)
chuyển mỗi biểu thức trong cân về cùng bậc 2 ta có:
\(a+\frac{\left(b-c\right)^2}{4}=a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{4}=a^2+a\left(b+c\right)+\frac{\left(b+c\right)^2-4ab}{4}\)
\(=\left(a+\frac{b+c}{2}\right)^2-bc\le\left(a+\frac{b+c}{2}\right)^2\)
\(\Rightarrow\sqrt{a+\frac{\left(b-c\right)^2}{2}}\le a+\frac{b+c}{2}\)
tương tự ta có: \(\hept{\begin{cases}\sqrt{b+\frac{\left(c-a\right)^2}{4}}\le b+\frac{c+a}{2}\\\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le c+\frac{a+b}{2}\end{cases}}\)
cộng theo vế của bđt trên ta được
\(P=\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\left(a+b+c\right)=2\)
Vậy GTLN của P=2 đạt được khi a=b=0;c=1 và các hoán vị
Đơn giản là Cauchy-Schwarz
\(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)\left(1+1+1\right)\)
\(=3\cdot\left(2a+2b+2c\right)=6\left(a+b+c\right)=1\)
\(\Rightarrow S^2\le6\Rightarrow S\le\sqrt{6}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
ta dự đoán điểm khi : \(a=b=c=\frac{1}{3}\)
\(\Rightarrow\sqrt{a+b}=\sqrt{b+c}=\sqrt{a+c}=\sqrt{\frac{2}{3}}\)
Khi đó ta có :
\(\sqrt{\frac{2}{3}}.\sqrt{a+b}\le\frac{\frac{2}{3}+a+b}{2}\)
\(\sqrt{\frac{2}{3}}.\sqrt{b+c}\le\frac{\frac{2}{3}+b+c}{2}\)
\(\sqrt{\frac{2}{3}}.\sqrt{c+a}\le\frac{\frac{2}{3}+a+c}{2}\)
cộng từng vế 3 bất phương trình ta có
\(\sqrt{\frac{2}{3}}.S\le\frac{1}{2}\left(\frac{2}{3}+2\left(a+b+c\right)\right)=2\) \(\Leftrightarrow S\le2.\sqrt{\frac{3}{2}}=\sqrt{6}\)
Vậy \(S_{max}=\sqrt{6}\)dấu "=" khi \(a=b=c=\frac{1}{3}\)