K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

\(a^3+b^3=c\left(3ab-c^2\right)\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[2a^2+2b^2+2c^2-2ab-2bc-2ca\right]=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(loai\right)\\a=b=c\end{cases}}\)

Mà a + b + c = 3 nên a = b = c = 1

Khi đó \(A=672.\left(1+1+1\right)+2=672.3+2=2018\)

12 tháng 9 2016

(a+b)2=a2+b2+2ab

(a+b)3=a3+b3+3ab(a+b)

a = 2 

b = 3 

rồi tính ra nhé 

ai k mình mình k lại cho 

13 tháng 3 2017

a, chắc bạn chép nhầm đề rồi đó nếu mà là 3ab thì k làm đc đâu

M=a+ a- b3 + b2 + 3ab2 -2ab +3ab2

= (a-b)3 +(a-b)2

= 343+49=392

b, P= -(3x+4x2+1/4x-2014)

= - [ (2x)2 -4x+1 +x +1/4x - 2015]

= -[ (2x-1)2- (2x-1)2/4x +1 -2015]

Max P = 2014   X=1/2

17 tháng 8 2019

\(\left(a-b\right)\left(a^2+3ab+b^2\right)+\left(a+b\right)^3+ab\left(b-a\right)\)

\(=\left(a-b\right)\left(a^2+3ab+b^2-ab\right)+\left(a+b\right)^3\)

\(=\left(a-b\right)\left(a+b\right)^2+\left(a+b\right)^3=\left(a+b\right)^2\left(a-b+a+b\right)=2a\left(a+b\right)^2\)

17 tháng 8 2019

\(\left(a-b\right)\left(a^2+3ab+b^2\right)+\left(a+b\right)^3+ab\left(b-a\right)\)

\(=\left(a-b\right)\left(a^2+3ab-ab+b^2\right)+\left(a+b\right)^3\)

\(=\left(a-b\right)\left(a^2+2ab+b^2\right)+\left(a+b\right)^3\)

\(=\left(a-b\right)\left(a+b\right)+\left(a+b\right)^3\)

\(=\left(a+b\right)^2\left(a+b+a-b\right)\)

\(=\left(a+b\right)^2.2a\)

17 tháng 10 2021

a,= a\(^2\)+2a+b\(^2\)-2b-2ab+37

=a\(^2\)-2ab+b\(^2\)+2a-2b+37

=(a-b)\(^2\)+2(a-b)+37

⇒5\(^2\)+2.5+37= 25+10+37= 72

b,= a\(^3\)+a\(^2\)-b\(^3\)+b\(^2\)+ab-3a\(^2\)b+3ab\(^2\)-3ab-95

=a\(^3\)-3a\(^2\)b+3ab\(^2\)-b\(^3\)+a\(^2\)-2ab+b\(^2\)-95

=(a-b)\(^3\)+(a-b)\(^2\)-95

⇒5\(^3\)+5\(^2\)-95= 125+25-95= 60

 

19 tháng 12 2016

Có: \(a^2+b^2=1-2ab\)

\(\Rightarrow a^2+b^2+2ab=1\Rightarrow\left(a+b\right)^2=1\)

Mà: \(a>0;b>0\Rightarrow a+b>0\)

Do đó: \(a+b=1\)

Có: \(M=a^3+b^3+3ab=a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3=1^3=1\)

19 tháng 12 2016

Ta có : M=a3+b3+3ab

=(a+b)(a2-ab+b2)+3ab=(a+b)(a2+b2-ab)+3ab

Ma : a2+b2=1-2ab 

\(\Rightarrow\)(a+b)(a2+b2-ab)+3ab

=(a+b)(1-2ab-ab)+3ab

=(a+b)(1-3ab)+3ab

=a+b

​Ma : a và b là hai số dương \(\Rightarrow\)a>0 va b>0
\(\Rightarrow\)Gia tri cua bieu thuc M=a3+b3+3ab = a+b .