K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2020

Ta có : A=3+32+33+...+32019

              =(3+32+33)+(34+35+36)+...+(32017+32018+32019)

              =3(1+3+32)+34(1+3+3)+...+32017(1+3+32)

              =3.13+34.13+...+32017.13\(⋮\)13

Vậy A\(⋮\)13.

19 tháng 2 2019

\(A=2+2^2+2^3+...+2^{2019}\)

\(2A=2^2+2^3+2^4+...+2^{2020}\)

\(A=2^{2020}-2\)

26 tháng 11 2015

ta đảo  ngược A lại ta có 1+112+113+...+119

2A=112+113+114+....+119+1110

lấy 2A-A còn 1110 có tận cùng băng 0 nên chia hết 5

 

1 tháng 11 2017

trả lời giúp mk với

20 tháng 11 2017

a bằng 14

b bằng 26

c bằng 15

11 tháng 9 2016

Ta có: A = 1 + 3 + 3+ 3+ 3+......+ 31999 + 32000

=> A = (1 + 3 + 32) + (3+ 3+ 35) +......+ (31998 + 31999 + 32001)

=> A = 1.13 + 33.(1 + 3 + 9) + ..... + 31998.( 1 + 3 + 9)

=> A = 13.1 + 3.13 + .... + 31998.13

=> A = 13.( 1 + 33 + .... + 31998) chia hết cho 13

11 tháng 9 2016

Dan chung A chia het cho 13

A= (1+3+3^2)+(3^3+3^4+3^5)+...+(3^1998+3^1999+3^2000)

Co 667 cap 4 luy thua

A=13+3^3.13+...+3^1998.13

A=13(1+3^3+...+3^1998) chia het cho 13

k cho minh nhe!

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.