K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
13 tháng 1 2022

Ta có : 

\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=30+2^4\times30+2^8\times30+..2^{56}\times30\)

Vậy A chia hết cho 30 nên A cũng chia hết cho 15 

hay nói cách khác A là Bội của 15

13 tháng 1 2022
CMR : A = 2 + 2^2 + 2^3 + …. + 2^60 ⋮ 15 Ta có : 2 + 22 + 23 + .... + 260 = ( 2 x 1 + 2 x 2 + 2 x 22 + 2 x 23 ) + ...... + ( 257 x 1 + 257 x 2 + 257 x 22 + 257 x 23 ) = 2 x ( 1 + 2 + 22 + 23 ) + ..... + 257 x ( 1 + 2 + 22 + 23 ) = 2 x 15 + ....... + 257 x 15 = ( 2 + ... + 257 ) x 15 mà ( 2 + ... + 257 ) x 15 ⋮ 15 => A ⋮ 15
9 tháng 12 2021

 số tự nhiên n  thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :

a. n=2020 

b. n=2021

c.n=2022

d.n=2023

DD
10 tháng 12 2021

\(A=1+2+2^2+2^3+...+2^{2020}\)

\(2A=2+2^2+2^3+2^4+...+2^{2021}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)

\(A=2^{2021}-1\)

\(2^n-A=1\)

\(\Leftrightarrow A=2^n-1\)

Suy ra \(n=2021\)

Chọn b. 

9 tháng 12 2021

 số tự nhiên n  thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :

a. n=2020 

b. n=2021

c.n=2022

d.n=2023

25 tháng 1 2024

\(\left(1^2+3^2+5^2+7^2+...+2023^2\right).\left(4^3-8^2\right)\\ =\left(1^2+3^2+5^2+7^2+...+2023^2\right).\left(64-64\right)\\ =\left(1^2+3^2+5^2+7^2+...+2023^2\right).0=0\)

21 tháng 1 2024

  M = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)

M = \(\dfrac{1}{1.1}+\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2023.2023}\)

   1 =   1 

 \(\dfrac{1}{2.2}\)  < \(\dfrac{1}{1.2}\)

  \(\dfrac{1}{3.3}\)  <  \(\dfrac{1}{2.3}\)

  \(\dfrac{1}{4.4}\)  < \(\dfrac{1}{3.4}\) 

  ..................

\(\dfrac{1}{2023.2023}\) < \(\dfrac{1}{2022.2023}\)

Cộng vế với vế ta có:

M < 1 +  \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)

M < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

M < 2 - \(\dfrac{1}{2023}\) < 2 (2) 

Kết hợp (1) và (2) ta có:

1 < M < 2

Vậy M không phải là số tự nhiên.

 

 

 

21 tháng 1 2024

M =  \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)

M = \(\dfrac{1}{1.1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{2023.2023}\)

1     =  1

\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)

\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

Cộng vế với vế ta có:

   M < 1 + \(\dfrac{1}{1.2}\) +\(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)

  M <  1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

   M < 2 - \(\dfrac{1}{2023}\) < 2 (2) 

Kết hợp (1) và (2) ta có: 1 < M < 2 

Vậy M không phải là số tự nhiên. 

 

 

24 tháng 10 2016

Mình làm ở dưới rồi nhé. Bạn kéo xuống là thấy =)