Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=3.(3^0+3^1+3^2+3^3+...+3^30)
3A=3^1+3^2+3^3+....+3^31
-
A=3^0+3^1+3^2+3^3+...+3^30
-----------------------------------------------------
2A=3^31-1=3^28+3^3-1=(3^4)^7.3^3-1=(...1).(...7)-1=...6
Suy ra A = ...3 . số chính phương không có tận cùng bằng 3
nhớ tick cho mình nhé chắc chắn đúng
A=3+3^2+3^3+...+3^20+3^30.
3A=3^2+3^3+3^4+...+3^21+3^31
2A=3^31-3SUY RA a khong phai la so chinh phuong
Ta có A chia hết cho 3
Nếu A là số chính phương thì A chia hết cho 32.Mà A ko chia hết cho 32=>A ko là số chính phương
Nhớ nhấn nhé
Số số hạng của tổng A là 30-0+1=31 số
A=1 + 3 + 32 + 33 +...+ 330=(1+3+32+33)+…+(324+325+326+327)+328+329+330
Đồng dư..0+..0+..0+…+…0+328+329+330=328+329+330(mod 10)
Ta có 32=-1 mod(10) suy ra 328+329+330 đồng dư 1+3+9=13 mod 10
Vậy A tận cùng là 3=> A không là số chính phương
Làm lại :
Ta có: A= 1+3+32+33+...+330
=>3A=3+32+33+34+...+331
=> 3A-A=(3+32+33+34+...+331) - (1+3+32+33+...+330)
=>2A=331-1
\(\Rightarrow A=\frac{3^{31}-1}{2}=\frac{\left(3^4\right)^7.3^3-1}{2}=\frac{\left(...1\right)^7.27-1}{2}\)
\(A=\frac{\left(...1\right).7-1}{2}=\frac{\left(...6\right)}{2}=...3\)
Vì số chính phương không có tận cùng là 3 nên A không phải là số chính phương
ta có 3A=3*(1+3+3^2+3^3+...+3^30)
3A=3+3^2+3^3+3^4+....+3^31
lấy 3A-A=(3+3^2+3^3+3^4+....+3^31)-(1+3+3^2+3^3+3^4+...+3^30)=2A=(3^31-1) vậy A=(3^31-1):2
ta có 3^31-1=34*7+3-1=X17*33-1=Y1*27-1=C7-1=C6
ta có A=C6:2=I3
ta thấy các số có các cs tận cùng bằng 2;3;5;8 ko phải là số chính phương mà A=I3 có tận cùng là 3
vậy A không phải là số chính phương
Ta có :
A = 1 + 3 + 32 + 33 + ..... + 330
3A = 3 + 32 + 33 + ..... + 330 + 331
3A - A = (3 + 32 + 33 + ..... + 330 + 331) - (1 + 3 + 32 + 33 + ..... + 330)
2A = 331 - 1
Tới đây thì bí !
a. Ta có 3A= 3+3^2+...+3^31
Vậy 3A-A=2A= 3-1-3 +3^31=> A=\(\frac{3^{31}-1}{2}\)
b. A=(3.3^30-1)/2= (3.27^10-1)/2= [3.(27^2)^5-1]/2 = \(\frac{3x729^5-1}{2}\)
Ta co \(729^5\) có số cuối là 9 => 3.\(729^5\)có số cuối là 7, -1 đi có số cuối là 6, chia 2 có số cuối là 3
Vậy A có số cuối là 3 => A không thể là 1 số chính phương
c. A-1= 3+ 3^2+3^3+3^4+3^5+3^6+....+3^25+3^26+3^27+3^28+3^29+3^30
(Từ 3 đến 3^30 có 30 số, chia làm 6 nhóm)
=3(1+3+9+27+81+243) + 3^6 (1+3+..+243) +....+ 3^24(1+3+...+243)
=364 (3+3^6+...+3^24) Ta có 364 chia hết 7 vậy (A-1) chia hết 7
A=1+3+3^2+...+3^30
=>3A=3+362+3^3+...+3^30+3^31
=>3A-A=3^31-1
=>2A=3^31-1
=>2A=(3^4)^7*3^3-1
=>2A=81^7*27-1
=>2A=...1*27-1
=>2A=...7-1
=>2A=..6
=>A=..6:2
=>A=...3 hoặc ...8
Mà các số tận cùng là 3 hoặc 8 ko thể là số chính phương .
=>A ko thể là số chính phương
Vậy bài toán đc cminh