K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

ĐKXĐ: x khác -2

\(A=\frac{2x^2+3x-2}{x+2}=0\Leftrightarrow2x^2+3x-2=0\Leftrightarrow2\left(x^2+\frac{3}{2}x-1\right)=0\)

\(\Leftrightarrow x^2+\frac{3}{2}x-1=0\Leftrightarrow x^2+2.\frac{3}{4}.x+\frac{9}{16}-\frac{25}{16}=0\Leftrightarrow\left(x+\frac{3}{4}\right)^2-\frac{25}{16}=0\)

\(\Leftrightarrow\left(x+\frac{3}{4}\right)^2=\frac{25}{16}\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{-5}{4}\\x+\frac{3}{4}=\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\left(loai\right)\\x=\frac{1}{2}\left(nhan\right)\end{cases}}\)

Vậy .............

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

16 tháng 3 2016

mặc kệ biến chú tâm vào hệ trong ngoặc rồi mũ nó lên

a)1

b)1

16 tháng 3 2019

D(x)=2x^2+3x-35

       =2x^2+10x-7x-35

       =2x(x+5)-7(x+5)

       =(x+5)(2x-7)

=> D(x)=0 <=> (x+5)(2x-7)=0 

                 <=> x+5=0 hoặc 2x-7=0

                 <=< x=-5 hoặc x=7/2

Vậy D(x) có 2 nghiệm x=-5 hoặc x=7/2

Đúng thì tk nha

4 tháng 8 2016

A)\(x^2+5x-6=x^2-x+6x-6\)

                           \(=x\left(x-1\right)+6\left(x-1\right)\) 

                            \(=\left(x+6\right)\left(x-1\right)\)

x + 6 = 0

 x     =  - 6

        

x - 1 = 0

x      = 1

5 tháng 8 2016

còn câu b bạn ơi

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

19 tháng 4 2019

\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)

\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)

Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)

Vậy B(x)  có nghiệm khi x=0

3 tháng 5 2023

\(a,A\left(x\right)=P\left(x\right)+Q\left(x\right)=2x^2+3x-5+2x^2-7x+5\\ =\left(2x^2+2x^2\right)+\left(3x-7x\right)+\left(-5+5\right)\\ =4x^2-4x\\ B\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^2+3x-5-\left(2x^2-7x+5\right)\\ =2x^2+3x-5-2x^2+7x-5\\ =\left(2x^2-2x^2\right)+\left(3x+7x\right)+\left(-5-5\right)\\ =4x-10\)

b, \(A\left(x\right)=0\\ \Rightarrow4x^2-4x=0\\\Leftrightarrow 4x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy nghiệm của A(x) là 0 và 1

\(B\left(x\right)=0\\ 4x-10=0\\ \Leftrightarrow4x=10\\ \Leftrightarrow x=\dfrac{5}{2}\)

Vậy nghiệm của B(x) là \(\dfrac{5}{2}\)

31 tháng 3 2019

và K(x)=7x^2-5x-2

A(x)=\(x^2+2x=0\)

Suy ra x.(2+x)=0

Suy ra 2+x=0

Suy ra x=-2

Vậy -2 là nghiệm của đt A(x)

8 tháng 9 2023

\(a,A=x^3+3x^2-4x-12\)

\(=x^2\left(x+3\right)-4\left(x+3\right)\)

\(=\left(x^2-4\right)\left(x+3\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x+3\right)\)

Thay \(x=2\) vào A, ta được:

\(A=\left(2-2\right)\left(2+2\right)\left(2+3\right)\)

\(=0\)

⇒ \(x=2\) là nghiệm của A

\(B=-2x^3+3x^2+4x+1\)

Thay \(x=2\) vào B, ta được:

\(B=-2\cdot2^3+3\cdot2^2+4\cdot2+1\)

\(=-16+12+8+1\)

\(=5\)

⇒ \(x=2\) không là nghiệm của B

\(b,A+B=x^3+3x^2-4x-12+\left(-2x^3\right)+3x^2+4x+1\)

\(=\left[x^3+\left(-2x^3\right)\right]+\left(3x^2+3x^2\right)+\left(-4x+4x\right)+\left(-12+1\right)\)

\(=-x^3+6x^2-11\)

\(A-B=x^3+3x^2-4x-12-\left(-2x^3+3x^2+4x+1\right)\)

\(=x^3+3x^2-4x-12+2x^3-3x^2-4x-1\)

\(=\left(x^3 +2x^3\right)+\left(3x^2-3x^2\right)+\left(-4x-4x\right)+\left(-12-1\right)\)

\(=3x^3-8x-13\)

#\(Toru \)

8 tháng 9 2023

Hihicamon bn