K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

Có 1 quy tắc là: Bất kì số nào có tận cùng là 0, 1, 5, 6 thì mũ bao nhiêu vẫn có tận cùng như thế.

Áp dụng, ta có:

\(2^{2004}=2^{4.501}=\left(2^4\right)^{501}=16^{501}=...6\)

A có tận cùng là 6.

17 tháng 5 2018

Ta có : 

210 = 24 (mod 100)

250 = 245 = 24 (mod 100)

2250 = 24= 24 (mod 100)

21000 = 244 = 76 (mod 100)

22000 = 762 = 76 (mod 100)

22004 = 22000 . 24 = 76.16=16 (mod 100)

Vậy hai chữ số tận cùng của 22004 là 16

_Chúc bạn học tốt_

21 tháng 2 2018

https://olm.vn/hoi-dap/question/997656.html

vô cái link đó là được

2 tháng 8 2015

2 chữ số chứ 3 cs mink chưa học

 

20 tháng 9 2015

\(3^{2004}=\left(3^4\right)^{501}=81^{501}=\left(.....1\right)\left(..1\right)..\left(...1\right)=\left(..........1\right)\)

\(9^{2014}=\left(9^2\right)^{1007}=81^{1007}=\left(..1\right)\left(...1\right).....\left(...1\right)=\left(......1\right)\)

20 tháng 9 2015

a) ta có : 3.3.3.3 = 1

Nghĩa là cứ 4 số 3 thì tận cùng = 1

Ta có :             2014 : 4 = 503 ( dư 2 )

Chữ số tận cùng là :  3 . 3 = 9 

b ) Tương tự câu a , 9.9 = 1

   

21 tháng 1 2016

a là 8            b là 6

 

15 tháng 12 2014

bài này dễ,nhưng mà là toán lớp 6 nha

15 tháng 12 2014

số có chữ số tận cùng là 0 mà nâng lên 1 lũy thừa bất kì thì chữ số tận cùng ko thay đổi

4 tháng 1 2019

a,   \(S=2.1+2.3+2.3^2+...+2.3^{2004}\)

          \(=2.\left(1+3+3^2+...+3^{2004}\right)\)

Đặt   \(A=1+3+3^2+...+3^{2004}\)

\(\Rightarrow\) \(3A=3+3^2+3^3+...+3^{2005}\)

\(\Rightarrow\) \(2A=3^{2005}-1\)

\(\Rightarrow\) \(A=\frac{3^{2005}-1}{2}\)

\(\Rightarrow\) \(S=2.\frac{3^{2005}-1}{2}=3^{2005}-1\)

b, Ta có : \(3^{2005}=3^{4.501+1}=\left(3^4\right)^{501}.3\)

Mà  \(\left(3^4\right)^{501}\) có chữ số tận cùng là 1

\(\Rightarrow\) \(\left(3^4\right)^{501}.3\) có chữ số tận cùng là 3

\(\Rightarrow\) \(3^{2005}\) có chữ số tận cùng là 3

\(\Rightarrow\) S có chữ số tận cùng là 2

\(\Rightarrow\) S không phải là số chính phương

Study well ! >_<

11 tháng 12 2017

Giải: Trước hết ta có nhận xét: Mọi lũy thừa trong T đều có số mũ khi chia cho 4 thì dư 3 (các lũy thừa đều có dạng n4(n − 2) + 3, n thuộc {2, 3, …, 2004}).

Theo tính chất 3 thì 23 có chữ số tận cùng là 8 ; 37 có chữ số tận cùng là 7 ; 411 có chữ số tận cùng là 4 ; … Như vậy, tổng T có chữ số tận cùng bằng chữ số tận cùng của tổng: (8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 199.(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 1 + 8 + 7 + 4 = 200(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 8 + 7 + 4 = 9019. Vậy: chữ số tận cùng của tổng T là 9.