Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
delta= \(\left(-5\right)^2-4.2.\left(-1\right)=25+8=33>0..\)
=> pt có 2 nghiệm phân biệt
Áp dụng hệ thức Vi-et:
\(\hept{\begin{cases}x_1+x_2=-\frac{5}{2}\\x_1x_2=\frac{-1}{2}\end{cases}}\)
A= \(x_1^2-2x_1-2x_2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2-2\left(x_1+x_2\right)..\)
\(\Leftrightarrow A=\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1+x_2\right)..\)
Thay vào A ta được: \(A=\left(-\frac{5}{2}\right)^2-2.\left(-\frac{1}{2}\right)-2.\left(-\frac{5}{2}\right).\)
\(=\frac{25}{4}+1+5=\frac{49}{4}.\)
Học tốt
a: \(x^2-8x-33=0\)
a=1; b=-8; c=-33
Vì ac<0 nên phương trình có hai nghiệm phân biệt
b: \(A=3\left(x_1+x_2\right)^2-2x_1x_2=3\cdot8^2-2\cdot\left(-33\right)=192+66=258\)
a.
-\(\Delta=\left(-8\right)^2-4.\left(-33\right)=64+132=196>0\)
Vậy pt luôn có 2 nghiệm phân biệt
-Giả sử: \(x_1;x_2\) là nghiệm của pt
Theo hệ thức vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-8\right)}{1}=\dfrac{8}{1}=8\\x_1.x_2=\dfrac{-33}{1}=-33\end{matrix}\right.\)
a) x = 0 là nghiệm của phương trình
=> (m-1).02 -2.m.0 + m + 1 = 0
<=> m + 1 = 0 <=> m = -1
vậy m = -1 thì pt có nghiệm là x = 0
b) PT có 2 nghiệm thì trước hết pt đã cho là phương trình bậc 2 <=> m - 1\(\ne\) 0 <=> m \(\ne\)1
\(\Delta\)' = (-m)2 - (m - 1)(m +1) = m2 - (m2 - 1) = 1 > 0
=> phương trình đã cho có 2 nghiệm là:
x1 = \(\frac{m+1}{m-1}\) ; x2 = \(\frac{m-1}{m-1}\) = 1
+) Để x1 .x2 = 5 <=> \(\frac{m+1}{m-1}\) = 5 <=> m +1 = 5( m - 1)
<=> m +1 = 5m - 5
<=> 6 = 4m <=> m = 3/2 (Thoả mãn)
+) Khi đó x1 + x2 = \(\frac{m+1}{m-1}\) + 1 = \(\frac{m+1+m-1}{m-1}=\frac{2m}{m-1}=\frac{2.\frac{3}{2}}{\frac{3}{2}-1}=\frac{3}{\frac{1}{2}}=6\)
Mình không đồng ý với phần tìm đen-ta của bạn Trần Thị Loan
Phương trình (m-1)x2 - 2mx + m + 1 = 0 ( a=m-1; b=-2m; c=m+1)
đen-ta = (-2m)2 - 4.(m-1).(m=1)=4
Vì đen-ta = 4 > 0 nên phương trình có 2 nghiệm phân biệt với mọi m
+) Nếu a2 < 0 => a1 < 0 => tổng a1 + a2 < 0 trái với giả thiết
=> a2 > 0 => 0< a2<a3<a4<a5<a6
Mà a1.a2.a3.a4.a5.a6 <0 => a1 < 0
Vì a1 + a2 > 0 => |a1| < |a2|
=> |a1| < |a2| < |a3| < |a4| < |a5| < |a6|
=>6. |a1| < |a1| + |a2| + |a3|+|a4|+|a5|+|a6| = 21 => |a1| < 3,5 Mà |a1| > 0 và nguyên
=> |a1| = 1 hoặc 2 hoặc 3
+) Nếu |a1| = 1 => a1 = -1 và |a2| + |a3|+|a4|+|a5|+|a6| = 21 - 1 = 20
Mà |a2| + |a3|+|a4|+|a5|+|a6| = a2 + a3 + a4 + a5 + a6
=> a1 + a2 + a3 + a4 + a5 + a6. = -1 + 20 = 19
+) Nếu |a1| = 2 => a1 = - 2 và |a2| + |a3|+|a4|+|a5|+|a6| = 19
=> a1 + a2 + a3 + a4 + a5 + a6. = -2 + 19 = 17
+) Nếu |a1| = 3 => a1 = - 3 và |a2| + |a3|+|a4|+|a5|+|a6| = 18
=> a1 + a2 + a3 + a4 + a5 + a6. = - 3 + 18 = 15
Vậy.................
ĐÁP SỐ: a1 + a2 + a3 + a4 + a5 + a6 = 19
LỜI GIẢI:
Nhận thấy: |a1| + |a2| + |a3|+|a4|+|a5|+|a6|=21 = 1+2+3+4+5+6 suy ra { |a1|;|a6|} = {1;6}
Do a1.a2.a3.a4.a5.a6 <0 suy ra số lượng phần tử số nguyên âm là 1, hoặc 3, hoặc 5 phần tử.
Từ giả thiết: tổng của hai số bất kì trong các số đó là số dương ta suy ra 2 điều:
(1) Không có nhiều hơn 1 số nguyên âm.
(2) Giá trị tuyệt đối của số nguyên âm đó là nhỏ nhất.
Vậy ta tìm được giá trị các số nguyên phù hợp:
a1 =-1
a2 = 2
a3 = 3
a4 = 4
a5 = 5
a6 = 6
KẾT LUẬN: a1 + a2 + a3 + a4 + a5 + a6 = 19.
Bạn thử giải toán trên trang này xem nhé
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
Từ \(a^2+a+1=0\Rightarrow a\ne1\)\(\Rightarrow\left(a-1\right)\left(a^2+a+1\right)=0\Rightarrow a^3-1=0\Rightarrow a^3=1\)
Ta có \(a^{2011}+\frac{1}{2011}=a.a^{2010}+\frac{1}{a.a^{2010}}=a.\left(a^3\right)^{670}+\frac{1}{a.\left(a^3\right)^{670}}=a+\frac{1}{a}=\frac{a^2+1}{a}=\frac{-a}{a}=-1\)
Trong trường hợp này a không còn là số thực nữa mà a trong trường số phức .
a2 + a + 1 = a2 + 2.a.0,5+ (0,5)2 + 0,75 = (a + 0,5)2 + 0,75 = 0
=> (a + 0,5)2 = -0,75 mà\(\left(a+0,5\right)^2\ge0\Rightarrow\)Ko có x thỏa mãn nên ko tính được tổng a2011 + 1/a2011