K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

Ta thấy các phân số ở tổng A khi quy đồng mẫu số sẽ chứa lũy thừa của 2 với số mũ lớn nhất là 2k (2k < hoặc = n) như vậy khi quy đồng mẫu số thì các phân số đều có tử chẵn chỉ có phân số 1/2k có tử lẻ

=> A có tử lẻ mẫu chẵn, không là số nguyên

=> đpcm

16 tháng 7 2016

A không phải là số nguyên vì:

   + Số 1 là 1 số nguyên, (không được là số thập phân)

   + Số 1 được cộng vời các số còn là phân số 

Ta cũng thấy rằng bất cứ một số nguyên  nào mà cộng vời lại phân số thì kết quả chắc chắn là 1 phân số, bạn cứ thử đi sẽ thấy.

  Từ những điều trên ta => A không pải là số nguyên.

1 tháng 6 2018

b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)

\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)

\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)

\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)

Từ (1);(2)\(\Rightarrow0< D< 1\)

\(\Rightarrowđpcm\)

20 tháng 7 2020

a,\(C>0\)

\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)

\(\Rightarrow0< A< 1\)

\(\Rightarrow A\notinℤ\)

c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

Ta quy đồng 3 số đầu

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)

\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)

\(1< E< 2\)

\(E\notinℤ\)

1 tháng 7 2017

Ta có : D = \(2\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{25}+.....+\frac{1}{n\left(n+2\right)}\right)\)

\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{n\left(n+2\right)}\)

\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{n}-\frac{1}{n+1}\)

\(\Rightarrow D=1-\frac{1}{n+1}=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)

Vậy D không phải là số nguyên (đpcm)

1 tháng 7 2017

\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n\left(n+2\right)}\right)\)

\(D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n\left(n+2\right)}\)

\(D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n\left(n+2\right)}\)

\(D=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{\left(n+2\right)-n}{n\left(n+2\right)}\)

\(D=\frac{3}{1.3}-\frac{1}{1.3}+\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+...+\frac{\left(n+2\right)}{n\left(n+2\right)}-\frac{n}{n\left(n+2\right)}\)

\(D=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\)

\(D=\frac{1}{1}-\frac{1}{n+2}\)

\(D=\frac{n+2}{n+2}-\frac{1}{n+2}\)

\(D=\frac{n+2-1}{n+2}\)

\(D=\frac{n+1}{n+2}\Rightarrow D\notin Z\left(dpcm\right)\)

16 tháng 7 2016

A = 1 + 1/2 + 1/3 + ... + 1/100

Các phân số ở A khi quy đồng mẫu số chứa lũy thừa của 2 với số mũ cao nhất là 26 như vậy khi quy đồng mẫu số các phân số ở tổng A đều có tử chẵn chỉ có phân số 1/64 có tử lẻ

=> A có tử lẻ mẫu chẵn, không là số nguyên

=> đpcm

21 tháng 7 2020

\(N=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

=>\(N=\frac{13860}{41580}+\frac{10385}{41580}+\frac{8316}{41580}+\frac{11880}{41580}+\frac{9240}{41580}+\frac{7560}{41580}\)

=>\(N=\frac{61251}{41580}\)

=>N ko phải là số nguyên (đpcm)

HỌC TÔT :) 

26 tháng 10 2019

Tham khảo:

Chúc bạn học tốt!

26 tháng 10 2019

Cảm ơn bạn nha

15 tháng 8 2017

1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)

=> còn lại thì bạn có thể tự chứng minh

16 tháng 8 2017

mk chả hiểu j

28 tháng 10 2019

Ta có: \(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

Do: \(\frac{2}{6}>\frac{2}{12};\frac{2}{8}>\frac{2}{12};\frac{2}{10}>\frac{2}{12};...;\frac{2}{11}>\frac{2}{12}\)

\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{2}{12}.6=1\)   \(\left(1\right)\)

Lại có: \(\frac{2}{8}< \frac{2}{6};\frac{2}{10}< \frac{2}{6};...;\frac{2}{11}< \frac{2}{6}\)

\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{2}{6}.6=2\)    \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow1< E< 2\)

                                \(\Rightarrow E\notin Z\)\(\left(đpcm\right)\)

Chúc bạn học tốt !!!