Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A = 2 + \(2^2+2^4+2^5+..........+2^{2015}+2^{2016}\)
\(2A-A=A=2^{2016}-1\)
vậy B = A
ủng hộ nha ai thấy đúng
Ta có: A = 1 + 2 + 22 + 23 + .... + 22016
=> 2A = 2 + 22 + 23 + 24 + ... + 22017
=> 2A - A = (2 + 22 + 23 + 24 + ... + 22017) - (1 + 2 + 22 + 23 + .... + 22016 )
=> A = 22017 - 1
Mà 22017 - 1 > 22017 - 2 => A > B.
Câu 1:
\(A=27^2.32^3=\left(3^3\right)^2.\left(2^5\right)^3=3^6.2^{15}\)
\(B=6^{16}=2^{16}.3^{16}\)
Từ \(\hept{\begin{cases}2^{15}< 2^{16}\\3^6< 3^{16}\end{cases}\Leftrightarrow2^{15}.3^6< 2^{16}.3^{16}\Leftrightarrow}A< B\)
Câu 2:
\(A=1+2+2^2+2^3+...+2^{2016}\)
<=>\(2A=2\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(2A=2+2^2+2^3+2^4...+2^{2017}\)
<=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(A=2^{2017}-1< 2^{2017}=B\)
Vậy A<B
muốn viết dấu mũ như thế kia thì viết thế nào hả bạn ?
\(A=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+...+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2017}\right)-\left(1+2+2^2+...+2^{2016}\right)\)
\(A=2^{2017}-1\)
\(B=4\cdot2^{2015}\)
\(B=2^2\cdot2^{2015}\)
\(B=2^{2017}\)
=> Vì \(2^{2017}-1< 2^{2017}\)nên A < B
\(\Rightarrow2A=2^1+2^2+....+2^{2017}\)
\(\Rightarrow2A-A=2^{2017}-1\)
hay\(A=2^{2017}-1\)
mà B=2^2017
nên A<B
bạn lần sau chớ có nổ nha!
A = 1 + 2 + 22 + 23 + ... + 22015
2A = 2 + 22 + 23 + 24 + ... + 22016
2A - A = ( 2 + 22 + 23 + 24 + ... + 22016 ) - ( 1 + 2 + 22 + 23 + ... + 22015 )
A = 22016 - 1
Mà B = 22016 - 2
=> A > B