Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dùng bất đẳng thức\(\frac{a}{b}<\frac{a+n}{b+n}\left(n\ne0\right)\)
Ta có \(B=\frac{10^{20}+1}{10^{21}+1}<\frac{10^{20}+1+9}{10^{21}+1+9}<\frac{10^{20}+10}{10^{21}+10}<\frac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\)
\(<\frac{10^{19}+1}{10^{20}+1}\)
Vậy \(A>B\)
\(10^{17}<10^{18}\)
\(\left(\frac{1}{10}\right)^{18}<\left(\frac{1}{10}\right)^{19}\)
Vậy A < B
vậy đúng không???
\(A=-\frac{9}{10^{2010}}-\frac{19}{10^{2011}}=-\frac{9}{10^{2010}}-\frac{10}{10^{2010}}+\frac{10}{10^{2010}}-\frac{9}{10^{2011}}-\frac{10}{10^{2011}}.\)
\(=-\frac{19}{10^{2010}}-\frac{9}{10^{2011}}+\frac{1}{10^{2009}}-\frac{1}{10^{2010}}=B+\frac{1}{10^{2009}}-\frac{1}{10^{2010}}\)
\(\Rightarrow A-B=\frac{1}{10^{2009}}-\frac{1}{10^{2010}}>0\Rightarrow A>B.\)
\(-A=\frac{9}{10^{2010}}+\frac{19}{10^{2011}}\)
\(-A=\frac{9}{10^{2010}}+\frac{10}{10^{2011}}+\frac{9}{10^{2011}}\)
\(-A=\frac{9}{10^{2010}}+\frac{1}{10^{2010}}+\frac{9}{10^{2011}}\)
\(-A=\frac{10}{10^{2010}}+\frac{9}{10^{2011}}\)
\(-A=\frac{1}{10^{2009}}+\frac{9}{10^{2011}}\)
Tương tự với B, ta có:
\(-B=\frac{9}{10^{2011}}+\frac{19}{10^{2010}}\)
\(-B=\frac{9}{10^{2011}}+\frac{10}{10^{2010}}+\frac{9}{10^{2010}}\)
\(-B=\frac{9}{10^{2010}}+\frac{1}{10^{2009}}+\frac{9}{10^{2010}}\)
Ta thấy -B > -A \(\Rightarrow\)A > B.
Ta có:\(B=\frac{10^{20}+1}{10^{21}+1}< 1\Rightarrow B=\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
=> A > B
e moi hc lop 5 thui
kb zoi e nka! e cx thich doc truyen conan lam nha!
này có giảng cho chị ko đó