Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh HằngRibi Nkok NgokMysterious PersonVõ Đông Anh TuấnPhương AnTrần Việt Linh
Lời giải:
a)
\(A\cap B=\left \{ x\in\mathbb{R}|4\leq x\leq 5 \right \}\)
\(B\cap C=\left \{ x\in\mathbb{R}|4\leq x< 6 \right \}\)
\(A\cap C=\left \{ x\in\mathbb{R}|2\leq x\leq 5 \right \}\)
\(A\cup C=\left \{ x\in\mathbb{R}|1\leq x< 6 \right \}\)
\(A\setminus (B\cup C)=A\setminus \left \{ x\in\mathbb{R}|2\leq x\leq 7 \right \}=\left \{ x\in\mathbb{R}|1\leq x <2 \right \}\)
b)
Ta có: \(A\cap B\cap C=\left \{ x\in\mathbb{R}|4\leq x\leq 5 \right \}\)
Như vậy để \(D\subset A\cap B\cap C\) thì \(4\leq a,b\leq 5\) và \(a\leq b\)
bạn giải dùm mình 2 câu các tập hợp số nữa đi. cám ơn trc nha. mai mình nộp rồi. bạn tranh thủ dùm
A=(-2;2)
B=[-3;2)
A giao B=(-2;2)
A\B=\(\varnothing\)
B\A=[-3;-2]
\(C_R\left(A\cap B\right)=R\backslash\left(-2;2\right)=(-\infty;-2]\cup[2;+\infty)\)
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)
a: A=(-7/4; -1/2]
\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)
\(C=\left(\dfrac{2}{3};+\infty\right)\)
b: \(\left(A\cap B\right)\cap C=\varnothing\)
\(\left(A\cup C\right)\cap\left(B\A\right)\)
\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)
\(=\left(4;\dfrac{9}{2}\right)\)
A=[-4;4]
B=[-3;2)
\(A\cap B\)=[-3;2)
A\B=[-4;-3)
B\A=\(\varnothing\)
Lời giải:
Ta viết lại tập hợp A,B:
\(A=\left \{ x\in\mathbb{R}|x\leq 3\text{hoặc}x>6 \right \}\)
\(B=\left \{ x\in\mathbb{R}|-5\leq x\leq 5\right \}\)
a)
\(\bullet A\setminus B=\left \{ x\in\mathbb{R}|x<-5 \text{hoặc} x>6\right \}\)
Khoảng \((-\infty;-5)\) và \((6;+\infty)\)
\(\bullet B\setminus A=\left\{x\in\mathbb{R}|3< x\leq 5\right\}\)
Nửa khoảng \((3;-5]\)
\(\bullet A\cup B=\left \{ x\in\mathbb{R}|x\leq 3, x>6 \text{hoặc}5\geq x>3 \right \}\)
\(\Rightarrow R\setminus (A\cup B)=\left \{ x\in\mathbb{R}|5< x < 6 \right \}\)
Khoảng \((5;6)\)
\(\bullet A\cap B=\left \{ x\in\mathbb{R}|-5\leq x\leq 3 \right \}\)
\(\Rightarrow R\setminus(A\cap B)=\left \{ x\in\mathbb{R}|x>3 \text{hoặc}x<-5 \right \}\)
Khoảng: \((3,+\infty); (-\infty;-5)\)
\(\bullet A\setminus B =\left \{ x\in\mathbb{R}|x> 6\text{hoặc}x< -5\right \}\)
\(\Rightarrow R\setminus( A\setminus B)=\left\{x\in\mathbb{R}| -5\leq x\leq 6\right\}\)
Đoạn \([-5;6]\)
b)
Vẽ trục số biểu diễn các tập hợp ra.
Khi đó:
Độ dài \(C\cap B\) là \(a-(-5)=7\Rightarrow a=2\)
Độ dài \(D\cap B\) là: \(5-b=9\Rightarrow b=-4\)
\(\Rightarrow C\cap D=\left\{x\in\mathbb{R}| -4\leq x\leq 2\right\}\)
Nửa khoảng: \((-\infty,3];(6;+\infty)\)
\(A\)