Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a-b=7\Rightarrow a=b+7\)
Thay \(a=b+7\) vào biểu thức B ta được :
\(B=\dfrac{3\left(7+b\right)-b}{2\left(7+b\right)+7}+\dfrac{3b-\left(7+b\right)}{2b-7}\)
\(=\dfrac{21+3b-b}{14+2b+7}+\dfrac{3b-7-b}{2b-7}\)
\(=\dfrac{2b+21}{2b+21}+\dfrac{2b-7}{2b-7}\)
\(=1+1=3\)
Vậy \(B=2\)
Đây là câu a/
https://hoc24.vn/hoi-dap/question/693692.html?pos=1903228
Còn câu b thì như sau:
Trước hết, nghi ngờ bạn ghi sai đề ở con này \(\dfrac{1}{a^2+7a+9}\) , số 9 phải là số 12 mới hợp lý. Mình tự sửa lại đề, còn nếu đề đúng như bạn chép thì bạn giữ nguyên nó, phần còn lại rút gọn được còn đâu thì quy đồng giải trâu thôi, chẳng cách nào với đề xấu kiểu ấy cả.
\(B=\dfrac{1}{a\left(a+1\right)}+\dfrac{1}{\left(a+1\right)\left(a+2\right)}+\dfrac{1}{\left(a+2\right)\left(a+3\right)}+\dfrac{1}{\left(a+3\right)\left(a+4\right)}+\dfrac{1}{\left(a+4\right)\left(a+5\right)}\)
\(B=\dfrac{1}{a}-\dfrac{1}{a+1}+\dfrac{1}{a+1}-\dfrac{1}{a+2}+\dfrac{1}{a+2}-\dfrac{1}{a+3}+\dfrac{1}{a+3}-\dfrac{1}{a+4}+\dfrac{1}{a+4}-\dfrac{1}{a+5}\)
\(B=\dfrac{1}{a}-\dfrac{1}{a+5}=\dfrac{5}{a\left(a+5\right)}\)
Bài 1:
a). Ta có: a < b
=> -6a > -6b
mà 3 > 1
=> \(3-6a>1-6b\)
b)
Ta có: a < b
=> a - 2 < b - 2
=> \(7\left(a-2\right)< 7\left(b-2\right)\)
c)
Ta có: a < b
=> -2a > -2b
=> 1 - 2a > 1 - 2b
\(\Rightarrow\dfrac{1-2a}{3}>\dfrac{1-2b}{3}\)
Theo BĐT Bu nhi a cốp xki ta có :
\(\left(a+b+c+d\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\ge16\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{16}{a+b+c+d}\)
Áp dụng vào bài toán ta có :
\(\dfrac{1}{3a+3b+2c}=\dfrac{1}{16}.\dfrac{16}{\left(a+b\right)+\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}\le\dfrac{1}{16}\left(\dfrac{1}{a+b}+\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
\(\dfrac{1}{3b+3c+2a}=\dfrac{1}{16}.\dfrac{16}{\left(b+c\right)+\left(b+c\right)+\left(a+b\right)+\left(c+a\right)}\le\dfrac{1}{16}\left(\dfrac{1}{b+c}+\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{c+a}\right)\)
\(\dfrac{1}{3c+3a+2b}=\dfrac{1}{16}.\dfrac{16}{\left(c+a\right)+\left(c+a\right)+\left(a+b\right)+\left(b+c\right)}\le\dfrac{1}{16}\left(\dfrac{1}{c+a}+\dfrac{1}{c+a}+\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\)
Cộng từng vế của BĐT ta được :
\(\dfrac{1}{3a+3b+2c}+\dfrac{1}{3b+3c+2a}+\dfrac{1}{3c+3a+2b}\le\dfrac{1}{16}\left(\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\right)=\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{1}{4}.6=\dfrac{3}{2}\)
Vậy GTLN của A là \(\dfrac{3}{2}\) . Dấu \("="\) xảy ra khi \(a=b=c=\dfrac{1}{4}\)
Lời giải:
Vì \(2a-b=5\Rightarrow b=2a-5\Rightarrow 2b=4a-10\)
\(\Rightarrow 7a-2b=7a-(4a-10)=3a+10\)
\(\Rightarrow \frac{7a-2b}{3a+10}=\frac{3a+10}{3a+10}=1\)
Lại có:
\(2a-b=5\Rightarrow 2a=b+5\Rightarrow 4a=2b+10\)
\(\Rightarrow 7b-4a=7b-(2b+10)=5b-10\)
\(\Rightarrow \frac{7b-4a}{15b-30}=\frac{5b-10}{15b-30}=\frac{5b-10}{3(5b-10)}=\frac{1}{3}\)
Vậy: \(A=1-\frac{1}{3}=\frac{2}{3}\)
\(\dfrac{5a-b}{3a+7}\)-\(\dfrac{3b-2a}{2b-7}\)
=\(\dfrac{5a-b}{3a+2a-b}\)-\(\dfrac{3b-2a}{2b-\left(2a-b\right)}\)
=\(\dfrac{5a-b}{5a-b}\)-\(\dfrac{3b-2a}{2b-2a+b}\) (vì 2a-b=7)
=\(\dfrac{5a-b}{5a-b}\)-\(\dfrac{3b-2a}{3b-2a}\)
=1-1
=0