K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)    (do a+b+c = 0)

=>  \(B=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

=>   đpcm

7 tháng 7 2019

3) Ta có:\(\sqrt{2000}< 2001\)

Áp dụng BĐT AM-GM:

\(\sqrt{1999.\sqrt{2000}}< \sqrt{1999.2001}< \frac{1999+2001}{2}=2000\)

Tương tự ta có:

\(\sqrt{2\sqrt{3\sqrt{4--...\sqrt{1999\sqrt{2000}}}}}< \sqrt{2\sqrt{3\sqrt{4=.\sqrt{1999.2001}}}}< \sqrt{2\sqrt{3\sqrt{4-\sqrt{1998.2000}}}}--< \sqrt{2.4}< 3\)

7 tháng 7 2019

1)

Với ab + bc + ac = 1 có:

\(a^2+1=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)

\(b^2+1=b^2+bc+ca+ab=b\left(b+c\right)+a\left(b+c\right)=\left(a+b\right)\left(b+c\right)\)

\(c^2+1=c^2+bc+ca+ab=c\left(b+c\right)+a\left(b+c\right)=\left(a+c\right)\left(b+c\right)\)

Do đó: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}\)

\(=\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}\)

\(=|\left(a+b\right)\left(a+c\right)\left(b+c\right)|\)

Vì \(a,b,c\in Q\Rightarrow|\left(a+b\right)\left(a+c\right)\left(b+c\right)|\in Q\left(đpcm\right)\)

15 tháng 6 2019

Ta có : 

\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)

\(=a\sqrt{a}+b\sqrt{b}+2\sqrt{ab}\)

\(=\)\(\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]+2\sqrt{ab}\)

\(A.B=\sqrt{ab}\left(\sqrt{ab+1}\right)+\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]\)

Đặt \(\sqrt{a}+\sqrt{b}=x;\)\(\sqrt{ab}=y\)\(\left(x;y\in Q\right)\)thì :

\(A+B=x\left(x^2-3y\right)+2y\)

\(A.B=y\left(y+1\right)+xy\left(x^2-3y\right)\)

\(\Rightarrow\)Các đa thức này là các số hữa tỉ  \(\left(đpcm\right)\)

23 tháng 9 2019

Câu hỏi của Phạm Quang Dương - Toán lớp 9 - Học toán với OnlineMath

24 tháng 10 2019

Đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\left(x;y;z>0\right)\). Thay vào và quy đồng từng đẳng thức ta được

xy2+y=xyz+x

yz2+z=xyz+y

x2z+x=xyz+z

cộng 3 đẳng thức trên ta được 3xyz = xy2+yz2+zx2 \(\ge3\sqrt[3]{xy^2.yz^2.zx^2}=3xyz\)

dấu '=' khi \(xy^2=yz^2=zx^2< =>x=y=z\) hay a=b=c

Vậy không nhất thiết abc=1