K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

Áp dụng bđt Cauchuy - Schwarz dưới dạng Engel ta có :

\(P=\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}\)

\(=\frac{9}{4\left(a+b+c\right)}\ge\frac{9}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Vậy \(N_{min}=\frac{9}{4}\) tại \(a=b=c=\frac{1}{3}\)

27 tháng 7 2017

Áp dụng cái này nha!:
a²/x + b²/y + c²/z +d²/t ≥ (a + b +c +d)²/(x + y + z + t) (wen thuộc)
1/a + 1/b + 1/b + 1/c ≥ 16/(a + 2b +c)
1/a + 1/b + 1/c + 1/c ≥ 16/(a + b +2c)
1/a + 1/a + 1/b + 1/c ≥ 16/(2a + b +c)
Cộng 3 vế lại:
1/a + 1/b +1/c ≥ 4[1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)]
⇔ ¼ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)
⇒ ½ (1/a + 1/b +1/c) ≥ ¼ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)
⇔ ½ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)
Dấu = xra khi a = b = c và 1/a + 1/b +1/c = 0
⇒ dấu = không xảy ra.
⇒ ½ (1/a + 1/b +1/c) > 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)

28 tháng 7 2017

T sợ lớp 8 có đứa chưa biết Cauchy-Schwarz

18 tháng 11 2017

\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)

\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)

\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)

\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)

Dấu = xảy ra khi ....

21 tháng 7 2020

Theo giả thiết, ta có: \(a^2b^2+b^2c^2+c^2a^2=a^2b^2c^2\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)

Áp dụng BĐT AM - GM cho 5 số, ta được: \(\hept{\begin{cases}a.a.a.b.b\le\frac{a^5+a^5+a^5+b^5+b^5}{5}=\frac{3a^5+2b^5}{5}\\b.b.b.a.a\le\frac{b^5+b^5+b^5+a^5+a^5}{5}=\frac{3b^5+2a^5}{5}\end{cases}}\)

\(\Rightarrow\frac{5\left(a^5+b^5\right)}{5}\ge a^2b^2\left(a+b\right)\)hay \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

\(\Rightarrow\frac{1}{\sqrt{a^5+b^5}}\le\frac{1}{ab\sqrt{a+b}}\)(1) .

Tương tự, ta có: \(\frac{1}{\sqrt{b^5+c^5}}\le\frac{1}{bc\sqrt{b+c}}\)(2); \(\frac{1}{\sqrt{c^5+a^5}}\le\frac{1}{ca\sqrt{c+a}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(VT=\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\)()

Xét \(\left(\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\right)^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}\right)\)\(=\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}\Rightarrow\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)(2)

Từ (1) và (2) suy ra \(\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)(đpcm)

Đẳng thức xảy ra khi \(a=b=c=\sqrt{3}\)

22 tháng 4 2018

Ngược dấu rồi

22 tháng 4 2018

Mk sửa r đó. H giúp mk vs. Cảm ơn

23 tháng 12 2017

Ta có : \(p=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(a+c\right)}+\frac{ab}{c^2\left(a+b\right)}\)

Áp dụng bất đẳng thức AM - GM ta có :

\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4ab}}=\frac{1}{a}\)

\(\frac{ac}{b^2\left(a+c\right)}+\frac{a+c}{4ac}\ge4\sqrt{\frac{ac}{b^2\left(a+c\right)}.\frac{a+c}{4ac}}=\frac{1}{b}\)

\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}.\frac{a+b}{4ab}}=\frac{1}{c}\)

Cộng vế với vế ta được \(p+\frac{1}{4c}+\frac{1}{4a}+\frac{1}{4b}+\frac{1}{4a}+\frac{1}{4c}+\frac{1}{4b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow p+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow p\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{2a.2b.2c}}=\frac{3}{\sqrt[3]{8abc}}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

19 tháng 8 2020

Xét: \(\frac{bc}{a^2b+ca^2}=\frac{bc}{a\cdot abc\cdot\frac{1}{c}+a\cdot abc\cdot\frac{1}{b}}=\frac{b^2c^2}{ab+ca}\)(*)

Tương tự với (*) ta có: \(\hept{\begin{cases}\frac{ca}{b^2c+ab^2}=\frac{c^2a^2}{ab+bc}\\\frac{ab}{c^2a+bc^2}=\frac{a^2b^2}{ca+bc}\end{cases}}\)

\(\Rightarrow\Sigma_{cyc}\frac{bc}{a^2b+ca^2}=\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\)

Ta thấy\(\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\) có dạng: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\left(a+b+c\right)\)

Bước cuối Cô-si ba số và kết hợp điều kiện abc=1 là xong