Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
=> \(a-b=\frac{1}{c}-\frac{1}{b}\) => a - b = \(\frac{b-c}{bc}\) (1)
b - c = \(\frac{1}{a}-\frac{1}{c}\) => b - c = \(\frac{c-a}{ac}\) (2)
c - a = \(\frac{1}{b}-\frac{1}{a}=\frac{a-b}{ab}\) (3)
Nhân vế với vế của (1)(2)(3) => \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\frac{b-c}{bc}.\frac{c-a}{ac}.\frac{a-b}{ab}\)
=> (abc)2 = 1 => abc = 1 hoặc abc = -1
Vậy...
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ab+ac}{abc}=2\)
\(\frac{bc+ab+ac}{a+b+c}=2\Leftrightarrow bc+ab+ac=2\left(a+b+c\right)\)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}\)( * )
Để \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)thì \(2\left(\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}\right)=2\Leftrightarrow\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=1\)
\(\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=\frac{a^2bc+bac^2+ab^2c}{\left(abc\right)^2}=\frac{abc\left(a+b+c\right)}{\left(abc\right)^2}=\frac{a+b+c}{abc}\)
mà a + b + c = abc \(\Rightarrow\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=\frac{abc}{abc}=1\Leftrightarrow\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}=2\)
thay \(\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}=2\) vào ( * ) ta được \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2=2\left(đpcm\right)\)
\(\text{Ta có: }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{bc.ac+ab.ac+ab.bc}{ab.bc.ac}\)
\(=\frac{abc.\left(a+b+c\right)}{a^2b^2c^2}=\frac{a+b+c}{abc}=1\left(\text{vì }a+b+c=abc\right)\)
\(\text{Lại có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=2\text{ vì }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\text{ từ}\left(1\right)\)
Vậy ...
\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\).
Tương tự ta có: \(\frac{1}{b+1}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\), \(\frac{1}{c+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\).
Nhân 3 bất đẳng thức trên theo vế ta được:
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Leftrightarrow abc\le\frac{1}{8}\).
nhật minh lm sai r
Từ : a+1b = b+1c
a-b=1c-1b
a-b=b−cbc (1)
Từ : b+1c=c+1a
b-c = c+1a
b-c = b−cac(2)
Từ : c+1a=a+1b
c-a =1b-1a
c-a=a−bab(3)
Nhân tùng vế của (1)(2)(3) cho nhau ,ta đc:
(a-b)(b-c)(c-a) = (a−b)(b−c)(c−a)a2b2c2
a^2b^2c^2(a-b)(b-c)(c-a)=(a-b)(b-c)(c-a)
(a-b)(b-c)(a^2b^2c^2 -a)=0
Vì a,b,c đôi một khác nhau
( a-b)(b-c)(c-a)khác 0
a^2b^2c^2 -1 =0
abc= 1 or abc=-1
Giả sử abc =1 ta có
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\Leftrightarrow a+ac=b+bc=c+bc\)
=>a(1+c)=b(1+c)=c(1+b)
=>a =b=c vô lí vì a;b;c đôi 1 khác nhau
=> Không có a,b,c nào thỏa mãn ,