K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

Quy đồng rồi rút gọn, ta có:

\(a\left(3x+1\right)+b\left(x+2\right)=14x+14\)

\(\Leftrightarrow3ax+a+bx+2b=14x+14\)

\(\Leftrightarrow x\left(3a+b\right)+\left(a+2b\right)=14x+14\)

\(\Rightarrow3a+b=14\left(1\right)\Rightarrow b=14-3a\)

Thay vào (2), ta có: \(a+2b=14\Rightarrow a-28+6a=14\)

\(\Rightarrow a=6;b=-4\)

Tích \(a.b=6.\left(-4\right)=-24\)

26 tháng 2 2017

\(\frac{a\left(3x-1\right)}{\left(x+2\right)\left(3x-1\right)}+\frac{b\left(x+2\right)}{3x^2+5x-2}=\frac{14x-14}{3x^2+5x?..2}=>?\) đề có vấn đề

30 tháng 11 2016

a. 2x

b.\({3x}\over x^2-1\)

14 tháng 12 2018

b,

đổi dấu 

-(x-1)/2-x +1/2-x

=-x+1+1/2-x

=2-x/2-x

=1

14 tháng 12 2018

Thặc vler .V

A/\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\)

\(=\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\)

\(=\left[\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\right]+\left[\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right]\)

\(=\left[\frac{x+3}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{x+1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right]+\left[\frac{x+5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}+\frac{x+3}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\right]\)

\(=\frac{2x+4}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2x+8}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)

\(=\frac{2\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)

\(=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}\)

\(=\frac{2x+10}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{2x+2}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}\)

\(=\frac{4x+12}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}\)

\(=\frac{4\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}\)

\(=\frac{4}{\left(x+1\right)\left(x+5\right)}\)

B/\(\frac{x-1}{x-2}+\frac{1}{2-x}\)

\(=\frac{x-1}{x-2}-\frac{1}{x-2}\)

\(=\frac{x-1-1}{x-2}\)

\(=\frac{x-2}{x-2}\)

\(=1\)