Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy đồng rồi rút gọn, ta có:
\(a\left(3x+1\right)+b\left(x+2\right)=14x+14\)
\(\Leftrightarrow3ax+a+bx+2b=14x+14\)
\(\Leftrightarrow x\left(3a+b\right)+\left(a+2b\right)=14x+14\)
\(\Rightarrow3a+b=14\left(1\right)\Rightarrow b=14-3a\)
Thay vào (2), ta có: \(a+2b=14\Rightarrow a-28+6a=14\)
\(\Rightarrow a=6;b=-4\)
Tích \(a.b=6.\left(-4\right)=-24\)
\(\frac{a\left(3x-1\right)}{\left(x+2\right)\left(3x-1\right)}+\frac{b\left(x+2\right)}{3x^2+5x-2}=\frac{14x-14}{3x^2+5x?..2}=>?\) đề có vấn đề
Thặc vler .V
A/\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\)
\(=\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\)
\(=\left[\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\right]+\left[\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right]\)
\(=\left[\frac{x+3}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{x+1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right]+\left[\frac{x+5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}+\frac{x+3}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\right]\)
\(=\frac{2x+4}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2x+8}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)
\(=\frac{2\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)
\(=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}\)
\(=\frac{2x+10}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{2x+2}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}\)
\(=\frac{4x+12}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}\)
\(=\frac{4\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}\)
\(=\frac{4}{\left(x+1\right)\left(x+5\right)}\)
B/\(\frac{x-1}{x-2}+\frac{1}{2-x}\)
\(=\frac{x-1}{x-2}-\frac{1}{x-2}\)
\(=\frac{x-1-1}{x-2}\)
\(=\frac{x-2}{x-2}\)
\(=1\)