Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay ab+bc+ac = 1 và Q ta được :
\(Q=\left(a^2+ab+ac+bc\right)\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) là bình phương của một số hữu tỉ (đpcm)
3/ Ta có:
\(x+y+z=0\)
\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)
\(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Ta có:
\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)
\(=-ax^2-by^2-cz^2\)
\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Leftrightarrow ax^2+by^2+cz^2=0\)
1/ Đặt \(a-b=x,b-c=y,c-z=z\)
\(\Rightarrow x+y+z=0\)
Ta có:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
+ \(a^2+1=a^2+ab+bc+ca\)
\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
+ Tương từ ta cm đc :
\(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
Do đó : \(Q=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow Q=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Vì a,b,c là các số hữu tỉ nên \(\left(s+b\right)\left(b+c\right)\left(c+a\right)\)là số hữu tỉ
Do đó suy ra đpcm
a) \(4\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\) là bình phương 1 số hữu tỉ => 4(xy+yz+zx) cũng là bp số hữu tỉ mà 4=22 => xy+yz+zx là bp 1 số hữu tỉ
b) \(x^2+y^2+z^2=2\left(xy+yz+zx\right)\)\(\Leftrightarrow\)\(\left(x+y\right)^2+z^2=4xy+2yz+2zx\)
\(\Leftrightarrow\)\(\left(x+y\right)^2-2z\left(x+y\right)+z^2=4xy\)\(\Leftrightarrow\)\(\left(x+y-z\right)^2=4xy\)
Do (x+y-z)2 là bình phương 1 số hữu tỉ => 4xy là bp số hữu tỉ => xy là bp số hữu tỉ
Câu hỏi của Nguyễn Phong - Toán lớp 8 - Học toán với OnlineMath