K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> a=bk ; c=dk

Suy ra:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

26 tháng 11 2016

Đặt a/b = c/d = k

=> a = bk; c = dk

Thay vào đk đề bài ta đc:

(bk)2 + b2/ (dk)2 + d2 ​ = b2 (k2 + 1)/d2(k2 + 1) = b/d (2)

ab/cd = bk.b/dk.d = b2.k/d2.k = b2/d2 = b/d (1)

Từ (1) và (2) suy ra a2 + b2/c2 + d2 = ab/cd → ĐPCM.

17 tháng 10 2014

a) => a/c=b/d  

=>(a/c)^2 = (b/d)^2

= a^2 - b^2/ c^2-d^2  = ab/cd

điều  PCM

7 tháng 9 2017

Tử a/b=c/d suy ra : a/c=b/d = ab/cd (1) hoặc a^2/c^2=b^2/d^2

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

a^2/c^2=b^2/d^2 = a^2-b^2/c^2-d^2 (2)

Từ (1) và (2) ta suy ra : ab/cd = a^2-b^2/c^2-d^2

7 tháng 8 2016

a) Do \(\frac{a}{b}=\frac{c}{d}\)nên \(\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\)\(\Rightarrow\frac{a}{c}\times\frac{b}{d}=\frac{ab}{cd}=k^2\)(1)

Mặt khác: \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=k^2\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=k^2\)

Áp dụng tính chất tỉ lệ thức ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=k^2\)(2)

Từ (1);(2) ta được:\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(=k^2\right)\)

7 tháng 8 2016

b) Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=k\Rightarrow\left(\frac{a+b}{c+d}\right)^2=k^2\)   (3)                 {dựa trên câu a đã có \(\frac{a}{c}=\frac{b}{d}=k\)}

Mặt khác:\(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=k^2\)\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=k^2\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=k^2\)    (4)

Từ (3);(4) ta được: \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(=k^2\right)\)