K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(\Leftrightarrow a^2+b^2-c^2=-2c^2-2bc-2ac-2ab\)

\(\Leftrightarrow a^2+b^2-c^2=-\left[2c.\left(c+b\right)+2a.\left(c+b\right)\right]\)

\(\Leftrightarrow a^2+b^2-c^2=-2.\left(a+c\right)\left(c+b\right)\)

Tương tự \(b^2+c^2-a^2=-2.\left(a+b\right)\left(a+c\right)\)

\(c^2+a^2-b^2=-2.\left(b+c\right)\left(b+a\right)\)

Đặt \(A=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)

\(=-\frac{1}{2}.\left[\frac{1}{\left(b+c\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(b+c\right)\left(a+b\right)}\right]\)

\(=-\frac{1}{2}.\frac{a+b+b+c+a+c}{\left(b+c\right).\left(a+c\right)\left(a+b\right)}=-\frac{1}{2}.\frac{2.\left(a+b+c\right)}{\left(b+c\right).\left(a+c\right).\left(a+b\right)}=0\)

12 tháng 3 2021

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)

Vì \(a,b,c\ne0\Rightarrow abc\ne0\)

\(\Rightarrow bc+ac-ab=0\)

\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)

\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)

\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)

CHÚC BẠN HỌC TỐT

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)

Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)

\(\Rightarrow bc+ac-ab=0\)

\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)

\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)

\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)

Vậy \(E=0\)

6 tháng 4 2017

1 bai thoi cung dc

14 tháng 10 2018

\(a+b=c\Rightarrow\left(a+b\right)^2=c^2\Rightarrow a^2+2ab+b^2=c^2\Rightarrow a^2+b^2-c^2=-2ab\)

Tượng tự: \(b^2+c^2-a^2=2bc,c^2+a^2-b^2=2ac\)

Khi đó: \(B=\frac{-1}{2ab}+\frac{1}{2bc}+\frac{1}{2ac}=\frac{-c+a+b}{2abc}=0\)

Chúc bạn học tốt.

10 tháng 9 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) <=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{a^2b}+\frac{3}{ab^2}=-\frac{1}{c^3}\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Khi đó, A = \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)

10 tháng 9 2020

Xét: \(A=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

Ta có đẳng thức sau: \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)

(Đẳng thức này chứng minh rất dễ nha, chỉ cần bung hết ra là được)

Vậy ta thế \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\)vào đẳng thức:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{bc}-\frac{1}{ca}\right)+\frac{3}{abc}\)

\(=\frac{3}{abc}\)Vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)---> Thế cái này vào A:

\(\Rightarrow A=abc.\frac{3}{abc}=3\)

Xoooooooong !!!!! :)))

7 tháng 4 2018

abc=a+b+c => 1 = 1/ab + 1/bc + 1/ac 

2 = 1/a+1/b+1/c => 4 = 1/a^2 + 1/b^2 + 1/c^2 + 2/ab + 2/ac + 2/cb 

=> 4 = 1/a^2 + 1/b^2 + 1/c^2 + 2(1/ab + 1/ac + 1/bc) = M + 2 

=> M = 4 - 2 = 2

Mk làm bài đầu thôi,sáng nay mk làm cái tt cho

7 tháng 4 2018

             \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\)\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{c}{abc}+\frac{a}{abc}+\frac{b}{abc}\right)=4\)

\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\frac{a+b+c}{abc}=4\)

\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)  (do  a+b+c = abc)

\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

11 tháng 4 2019

a+b+c=0 <=>  a+b=-c ; a+c=-b ; b+c=-a

\(\frac{1}{b^2+c^2-a^2}=\frac{1}{\left(b-a\right)\left(a+b\right)+c^2}=\frac{1}{\left(b-a\right)\left(-c\right)+c^2}=\frac{1}{c\left(a-b+c\right)}=\frac{1}{-2bc}\)

Tương tự: \(\frac{1}{c^2+a^2-b^2}=\frac{1}{-2ca};\frac{1}{a^2+b^2-c^2}=\frac{1}{-2ab}\)

=>\(G=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=\frac{0}{-2abc}=0\)

23 tháng 10 2016

Sưả câu 2. a2+b2+c2=3abc

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

25 tháng 1 2019

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\text{Mà }\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\Rightarrow2ab+2bc+2ac=0\)

\(\Rightarrow\hept{\begin{cases}2ab=-2bc-2ac\\2bc=-2ac-2ab\\2ac=-2ab-2bc\end{cases}}\)

\(A=\frac{a^2}{a^2-2ab-2ac}+\frac{b^2}{b^2-2ab-2bc}+\frac{c^2}{c^2-2bc-2ac}\)

\(A=\frac{a^2}{a.\left(a-2b-2c\right)}+\frac{b^2}{b.\left(b-2a-2c\right)}+\frac{c^2}{c.\left(c-2b-2c\right)}\)

\(A=\frac{a}{a-2b-2c}+\frac{b}{b-2a-2c}+\frac{c}{c-2b-2c}\)

25 tháng 1 2019

bạn ơi không rút gọn đc nữa ak