K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

vì a;b;c là độ dài 3 cạnh của 1 tam giác áp dụng bđt tam giác ta có\(\Rightarrow\hept{\begin{cases}a+b>c\Rightarrow a+b-c>0\\a+c>b\Rightarrow a+c-b>0\\b+c>a\Rightarrow b+c-a>0\end{cases}}\)

\(\Rightarrow\sqrt{a+b-c};\sqrt{a+c-b};\sqrt{b+c-a}\)luôn được xác định\(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)>=0\Rightarrow a+b-c-2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}+a+c-b\)\(>=0\Rightarrow a+b-c+a+c-b>=2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\Rightarrow\frac{a+b-c+a+c-b}{2}=\frac{2a}{2}\)

\(=a>=\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\)

tương tự ta có :\(b>=\sqrt{\left(a+b-c\right)\left(b+c-a\right)};c>=\sqrt{\left(a+c-b\right)\left(b+c-a\right)}\)

\(\Rightarrow abc>=\sqrt{\left(a+b-c\right)^2\left(a+c-b\right)^2\left(b+c-a\right)^2}=\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

dấu = xảy ra khi a=b=c

20 tháng 6 2018

dòng 3 là vì  \(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)^2>=0\)nhá

DD
18 tháng 6 2021

Câu 1: 

\(a^3=a^2.a=\left(b^2+c^2\right).a>b^2.b+c^2.c=b^3+c^3\)

Câu 2: 

\(\left|x-3y\right|^{2007}+\left|y+4\right|^{2008}=0\)

\(\Leftrightarrow\hept{\begin{cases}x-3y=0\\y+4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)

10 tháng 2 2016

Bài khó đấy

28 tháng 11 2016

Đặt \(\hept{\begin{cases}x=b+c-a\\y=a+c-b\\z=a+b-c\end{cases}}\left(x;y;z>0\right)\).Ta có:

\(x+y=b+c-a+a+c-b=2c\Rightarrow c=\frac{x+y}{2}\)

\(y+z=a+c-b+a+b-c=2a\Rightarrow a=\frac{y+z}{2}\)

\(z+x=a+b-c+b+c-a=2b\Rightarrow b=\frac{z+x}{2}\)

Do đó: \(A=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)

\(\Leftrightarrow2A=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\ge6\) (BĐT AM-GM)

\(\Rightarrow A\ge\frac{6}{2}=3\).Dấu "=" khi a=b=c

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

26 tháng 4 2016

ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)

=> (a+b)(b+c)(c+a)>=\(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

26 tháng 4 2016

Bạn Anh làm đúng

27 tháng 5 2020

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Đẳng thức xảy ra khi tam giác đó là tam giác đều