Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3a^2+2ab+3b^2=m\left(a+b\right)^2+n\left(a-b\right)^2\)
\(=\left(m+n\right)a^2+2\left(m-n\right)ab+\left(m+n\right)b^2\)
Đồng nhất hệ số ta được \(\hept{\begin{cases}m+n=3\\m-n=1\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\n=1\end{cases}}\)
Do đó \(3a^2+2ab+3b^2=2\left(a+b\right)^2+\left(a-b\right)^2\ge2\left(a+b\right)^2\)
Tương tự với mấy cái BĐT còn lại thay vào ta được:
\(P\ge2\sqrt{2}\left(a+b+c\right)\ge2\sqrt{2}\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}=6\sqrt{2}\)
Dấu "=" xảy ra khi a = b = c = 1.
P/s: Em không chắc đâu ạ!
Ta có: P=∑\(\sqrt{3a^2+2ab+3b^2}\)=∑\(\sqrt{\left(a-b\right)^2+2\left(a+b\right)^2}\ge\)
∑\(\sqrt{2}\left(a+b\right)\ge\frac{2\sqrt{2}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=6\sqrt{2}\)
Chào bạn, hãy theo dõi lời giải của mình nhé!
\(VT=\sqrt{4\left(a^2+b^2+c^2\right)+2\Sigma_{cyc}\sqrt{\left(a^2+3b^2\right)\left(b^2+3c^2\right)}}\)
\(\ge\sqrt{4\left(a+b+c\right)^2}=2\left(a+b+c\right)\) (Bunhia)
ez to prove\(\frac{\left(a+b+c\right)^2}{3}\ge a^2+b^2+c^2\)
\(\Rightarrow\frac{\left(a+b+c\right)^4}{3}\ge27\Rightarrow a+b+c\ge3\)
Thay vào và hoàn tất chứng minh.
P/s: Bài trên có ngược dấu đấy kkk
This's Vasc'inequality .See more here :Câu hỏi của Neet - Toán lớp 10 | Học trực tuyến
Ap dug cosi thoj
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tuong tu
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cog lai ta dc
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mat khc
a^2+b^2+c^2>=ab+bc+ca
nen
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dau = xay ra khi a=b=c
Mình đặt biểu thức đó là P
Ta có : \(\sqrt{3a^2+2ab+3b^2}=\sqrt{\left(a-b\right)^2+2\left(a+b\right)^2}\ge\sqrt{2\left(a+b\right)^2}=\sqrt{2}\left(a+b\right)\)
Tương tự ta cũng có :
\(\sqrt{3b^2+2bc+3c^2}\ge\sqrt{2}\left(b+c\right)\) , \(\sqrt{3c^2+2ca+3a^2}\ge\sqrt{2}\left(c+a\right)\)
Suy ra : \(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
\(\ge\sqrt{2}\left(a+b\right)+\sqrt{2}\left(b+c\right)+\sqrt{2}\left(c+a\right)\)
\(=2\sqrt{2}\left(a+b+c\right)\)
+ ) Áp dụng bất đẳng thức AM - GM :
\(a+b+c=a+1+b+1+c+1-3\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-3=2.3-3=3\)
Suy ra \(P\ge2\sqrt{2}.3=6\sqrt{2}\)
Vậy giá trị nhỏ nhất của \(P=6\sqrt{2}\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{a}+\sqrt{b}+\sqrt{c}=3\\\sqrt{a}=\sqrt{b}=\sqrt{c}=1\\a=b=c\end{matrix}\right.\) \(\Rightarrow a=b=c=1\)
\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)
Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)
Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)
\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b=c\)