\(\sqrt{c\left(a-c\right)}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

Em nghĩ đề phải là \(\sqrt{c\left(a-c\right)}-\sqrt{c\left(b-c\right)}-\sqrt{ab}< 0\) chứ? Và em cũng không chắc đâu. Em mới biết sơ sơ về BĐT thôi. Nên nếu sai thì thông cảm cho em ạ

Từ đề bài suy ra \(\left(a-c\right)\left(b-c\right)>0\Leftrightarrow ab>ac+bc-c^2\)

Lại có \(ab>c\left(a-c\right)+bc>c\left(a-c\right)\) (do b và c không âm)

Suy ra \(\sqrt{c\left(a-c\right)}< \sqrt{ab}\)(1). Lại có: \(ab>ac+\left(bc-c^2\right)\)

\(=ac+c\left(b-c\right)>c\left(b-c\right)\Rightarrow\sqrt{c\left(b-c\right)}< \sqrt{ab}\) (2)

Từ (1) và (2) suy ra \(VT< \sqrt{ab}-\sqrt{ab}-\sqrt{ab}=-\sqrt{ab}\le0\)

Do vậy VT < 0 ta có đpcm.

29 tháng 6 2019

cái này chắc đúng rồi :v Góc học tập của Nguyễn Trần Nhã Anh | Học trực tuyến

6 tháng 9 2017

a) \(BĐT\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

\(\Leftrightarrow\sqrt{\frac{c\left(a-c\right)}{ab}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)

\(\Leftrightarrow\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}+\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le1\)

Áp dụng AM-GM:\(VT\le\frac{1}{2}\left(\frac{c}{b}+1-\frac{c}{a}+\frac{c}{a}+1-\frac{c}{b}\right)=1\left(đpcm\right)\)

Dấu = xảy ra khi (a+b).c=ab

b) \(2+b+c+2+b+c\ge2\sqrt{\left(b+1\right)\left(c+1\right)}+2+b+c=\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge4\left(1+a\right)\)

\(\Leftrightarrow b+c\ge2a\)

5 tháng 9 2017

cau a) dung cosi

\(\sqrt{c\left(a-c\right)}\le\frac{a-c+c}{2}\) ap dung cosi cho hai so c va a-c

tuong tu voi cac so khac

\(BT\le\frac{a-c+c}{2}+\frac{b-c+c}{2}-\frac{a+b}{2}\)(bt la VT cua de)

=> DPCM

b)

dung cosi nhu cau a

lam nhanh luon

\(\sqrt{1+b}\ge\frac{b+1+1}{2}\)

tuong tu

\(BT\ge\frac{b+2}{2}+\frac{c+2}{2}\ge a+2\)

<=> b+c>=2a

18 tháng 11 2017

a) Gõ link này nha: http://olm.vn/hoi-dap/question/1078496.html

Áp dụng bđt Bunhiacopski ta có

\(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\le\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2}+\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2}.\)

\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{c+b-c}.\sqrt{c+a-c}=\sqrt{ab}\left(đpcm\right)\)

30 tháng 10 2019

Bu-nhi-a-cốp-ski: (ab+cd)2 \(\le\)( a2 + c2 )( b2 + d2 ) mà bạn.

12 tháng 9 2017

ý a ko cần giải đâu nha mk ra òi

Dễ thôi

2 tháng 8 2018

sử dụng bđt bunhia

2 tháng 8 2018

Áp dụng BDT Bu-nhi-a-cốp-xki:

\(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)=ab\\ \Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

Đẳng thức xảy ra khi: \(\dfrac{c}{b-c}=\dfrac{a-c}{c}\)

\(\Rightarrow c^2=\left(b-c\right)\left(a-c\right)\\ \Rightarrow c^2=ab-ac-bc+c^2\\ \Rightarrow ab-ac-bc=0\)

9 tháng 10 2017

a) vì ab > 0 nên chia cả hai vế Bất đẳng thức cho \(\sqrt{ab}\) ta được

\(\sqrt{\dfrac{c\left(a-c\right)}{ab}}+\sqrt{\dfrac{c\left(b-c\right)}{ab}}\le1\)

Áp dụng Bất đẳng thức Cauchy cho hai số

\(\Rightarrow\sqrt{\dfrac{c}{b}\left(\dfrac{a-c}{a}\right)}+\sqrt{\dfrac{c}{a}\left(\dfrac{b-c}{b}\right)}\le\dfrac{1}{2}\left(\dfrac{c}{b}+\dfrac{a-c}{a}\right)+\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{b-c}{b}\right)=1\)

vậy nên ta có đpcm

10 tháng 10 2017

\(\frac{2005}{\sqrt{2006} }+\frac{2006}{\sqrt{2005} }>\sqrt{2005}+\sqrt{2006} \)

<=>\(2005\sqrt{2005}+2006\sqrt{2006}>2005\sqrt{2006}+2006\sqrt{2005} \)

<=>\(\sqrt{2006}<\sqrt{2005} \)

4 tháng 2 2021

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

4 tháng 2 2021

OMG !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!