Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
Cho a, b, c > 1(chỗ này là ý tui, dùng Wolfram Alpha sẽ thấy nếu không sửa như vầy thì đẳng thức không xảy ra). CMR:
\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+3\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\) (cái này là ý chủ tus đấy nhá!)
\(\Leftrightarrow\frac{2a}{2a-1}+\frac{2b}{2b-1}+\frac{2c}{2c-1}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\) (tách ghép vế trái + làm chặt BĐT do \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};..\))
\(\Leftrightarrow\frac{2a^2-4a+2}{a\left(2a-1\right)}+\frac{2b^2-4b+2}{b\left(2b-1\right)}+\frac{2c^2-4c+1}{c\left(2c-1\right)}\ge0\) (chuyển vế + quy đồng)
\(\Leftrightarrow\frac{2\left(a-1\right)^2}{a\left(2a-1\right)}+\frac{2\left(b-1\right)^2}{b\left(2b-1\right)}+\frac{2\left(c-1\right)^2}{c\left(2c-1\right)}\ge0\) (đúng)
Đẳng thức xảy ra khi a = b = c = 1
Vậy ta có đpcm.
\(\frac{1}{2a-1}+1\ge\frac{\left(1+1\right)^2}{2a-1+1}=\frac{4}{2a}=\frac{2}{a}\)
Ta có:
\(\frac{1}{a^2+2b^2+3}=\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\le\frac{1}{2ab+2b+2}=\frac{1}{2}\cdot\frac{1}{ab+b+1}\)
Tương tự CM được:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\cdot\frac{1}{bc+c+1}\) và \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\cdot\frac{1}{ca+a+1}\)
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab^2c+abc+ab}+\frac{b}{abc+ab+b}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)=\frac{1}{2}\cdot1=\frac{1}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
A=\(\frac{1}{a^2+2b^2+3}\)+\(\frac{1}{b^2+2c^2+3}\)+\(\frac{1}{c^2+2a^2+3}\)
ta có: \(\frac{1}{a^2+2b^2+3}\)=\(\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\)\(\le\)\(\frac{1}{2\left(ab+b+1\right)}\)
vì : a2+b2\(\ge\)2\(\sqrt{a^2b^2}\)=2ab
b2+1\(\ge\)2\(\sqrt{b^2x1}\)=2b
cmtt => A\(\le\)\(\frac{1}{2}\)x(\(\frac{1}{ab+b+1}\)+\(\frac{1}{bc+c+1}\)+\(\frac{1}{ca+a+1}\))
=\(\frac{1}{2}\)x(\(\frac{1}{ab+b+1}\)+\(\frac{ab}{ab^2c+abc+ab}\)+\(\frac{b}{cba+ab+b}\))
=\(\frac{1}{2}\)x (\(\frac{1}{ab+b+1}\)+\(\frac{ab}{ab+b+1}\)+\(\frac{b}{ab+b+1}\))=\(\frac{1}{2}\)x\(\frac{ab+b+1}{ab+b+1}\)=\(\frac{1}{2}\)
dấu "=" xảy ra <=> a=b=c=1
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Do abc=1nên ta được \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+c+1}=\frac{abc}{ab+b+abc}+\frac{a}{abc+ac+a}+\frac{1}{ca+a+1}\)\(=\frac{ac}{1+a+ac}+\frac{a}{1+ac+a}+\frac{1}{ca+a+1}=1\)
Dấu "=" xảy ra khi a=b=c=1
Hình như shi thiếu bước đầu =)))
\(\frac{1}{a^2+2b^2+3}=\frac{1}{a^2+b^2+b^2+1+2}\le\frac{1}{2ab+2b+2}=\frac{1}{2}\cdot\frac{1}{ab+b+1}\)
Tương tự:\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\cdot\frac{1}{bc+c+1};\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\cdot\frac{1}{ca+a+1}\)
\(\Rightarrow LHS\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)=\frac{1}{2}\) Vì abc=1
Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:
\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)
\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)
\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)
Cộng (1),(2) và (3) có:
\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)
\(\Rightarrow2VP\ge2VT\)
\(\RightarrowĐPCM\)
Lời giải :
\(P=\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\)
\(P=\frac{1}{9}\cdot\left(\frac{9}{a+b+b}+\frac{9}{b+c+c}+\frac{9}{c+a+a}\right)\)
Áp dụng bđt Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)ta có :
\(P\le\frac{1}{9}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{b}+\frac{2}{c}+\frac{1}{c}+\frac{2}{a}\right)\)
\(=\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)
\(=\frac{1}{3}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{1}{3}\cdot9=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Theo Cauchy: \(\frac{1}{a+2b}=\frac{1}{a+b+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)\)
Tương tự hai BĐT còn lại và cộng theo vế thu được:
\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3\)
Đẳng thức xảy ra khi a = b = c = 1.
Vậy..
Đặt x = \(\frac{1}{2a+1},y=\frac{1}{2b+1},z=\frac{1}{2c+1}\)
Khi đó \(a=\frac{1-x}{2x},b=\frac{1-y}{2y},c=\frac{1-z}{2z}\)
Ta thấy 0 < x, y, z < 1 và x + y + z \(\ge1\)
Bất đẳng thức cần chứng minh trở thành :
\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\ge\frac{3}{7}\)
Áp dụng bất đẳng thức Bunhiacốpxki ta có :
\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\)
\(=\frac{x^2}{3x-2x^2}+\frac{y^2}{3y-2y^2}+\frac{z^2}{3z-2z^2}\)
\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-2\left(x^2+y^2+z^2\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-\frac{2}{3}\left(x+y+z\right)^2}\)
\(=\frac{3}{\frac{9}{x+y+z}-2}\ge\frac{3}{7}\)
Cbht