\(\frac{a+b}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2020

Đặt \(a=x^2;b=y^2\) với x;y dương

Ta cần chứng minh: \(\left(x^2+y^2\right)^2+\frac{1}{2}\left(x^2+y^2\right)\ge2x^2y+2xy^2\)

\(\Leftrightarrow\left(x^2-y^2\right)^2+4x^2y^2+\frac{1}{2}x^2+\frac{1}{2}y^2-2x^2y-2xy^2\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2+\frac{1}{2}x^2\left(4y^2-4y+1\right)+\frac{1}{2}y^2\left(4x^2-4x+1\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2+\frac{1}{2}x^2\left(2y-1\right)^2+\frac{1}{2}y^2\left(2x-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\) hay \(a=b=\frac{1}{4}\)

14 tháng 11 2016

Ta có: \(\left(a+b\right)^2\ge4ab\)

Từ đó ta có

\(\left(a+b\right)^2+\frac{a+b}{2}\ge4ab+\frac{a+b}{2}\)

Ta cần chứng minh 

\(4ab+\frac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}\)

\(\Leftrightarrow8ab+a+b-4a\sqrt{b}-4b\sqrt{a}\ge0\)

\(\Leftrightarrow\left(4ab-4a\sqrt{b}+a\right)+\left(4ab-4b\sqrt{a}+b\right)\ge0\)

\(\Leftrightarrow\left(2\sqrt{ab}-\sqrt{a}\right)^2+\left(2\sqrt{ab}-\sqrt{b}\right)^2\ge0\)(đúng)

\(\Rightarrow\)ĐPCM là đúng

20 tháng 5 2018

Nhon ~~ Xin Chào Bạn Nha >< Hiện Giờ Bên Tụi Mk đang có 1 cuộc thi đó là cuộc thi ảnh đẹp nhoa >< Nếu Bạn mún tham gia Hãy Chọn 1 Tấm hik Đẹp Nhất của mk Và Đưa Link ảnh đó cho mk . sau ngày hum nay 20/5 -> đến Ngày 22 / 5 Mk sẽ ra Kết qả và gửi cho Bạn / 

giải nhất sẽ đc 3 mỗi ngày , thời hạn sẽ kết thúc sau khi hết 1 tuần 

giải nhì sẽ được 2 mỗi ngày . kết thúc sau 4 ngày 

giải 3 sẽ đc mk kb +   1  

.>< Thanh Kìu nhìu nhoa >< 

21 tháng 3 2019

Duyên Nguyễn : Ảnh về chủ đề j ? Hay ảnh tự do ?

Câu b : Ta có :

\(\left(a+b\right)^2+\dfrac{a+b}{2}=\left(a+b\right)\left(a+b+\dfrac{1}{2}\right)=\left(a+b\right)\left[\left(a+\dfrac{1}{4}\right)+\left(b+\dfrac{1}{4}\right)\right]\)

Áp dụng BĐT Cô - Si ta có :

\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\a+\dfrac{1}{4}\ge\sqrt{a}\\b+\dfrac{1}{4}\ge\sqrt{b}\end{matrix}\right.\)

\(\Rightarrow VT\ge2\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)=2a\sqrt{b}+2b\sqrt{a}\) ( đpcm )

Dấu \("="\) xảy ra khi \(a=b=-\dfrac{1}{4}\)

1 tháng 1 2019

Bạn làm giùm mình câu a với được không vậy

8 tháng 10 2019

Làm chữa lỗi phát:v Đến giờ mới nghĩ ra(thực ra là tình cờ xem lại ngày xưa:(

\(VT=\Sigma\frac{\sqrt{\left(a^2+b^2\right)2ab}}{a^2+b^2}\ge\Sigma\frac{2ab}{a^2+b^2}+3-3\)

\(=\Sigma\frac{\left(a+b\right)^2}{a^2+b^2}-3\ge\frac{\left[2\left(a+b+c\right)\right]^2}{2\left(a^2+b^2+c^2\right)}-3\)

\(=\frac{2\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)}-3=\frac{2\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2}-3\)

\(=\frac{4\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}-3=1\)(qed)

Đẳng thức xảy ra khi a = b = 1; c = 0 và các hoán vị (xét sơ sơ thôi chớ xét chi tiết em không biết làm đâu:v)

P.s: Chả biết có đúng hay không nữa:(( Lần này mà không đúng thì khổ.

12 tháng 8 2019

Nguyễn Bùi Đại Hiệp xem lại đề nhé bạn, dạng đề như này thì dữ kiện đầu phải là \(a+b+c=5\) nhé.

12 tháng 8 2019

Sửa đề : cho a,b,c là các số thực thỏa \(a+b+c=5\)\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

Bài làm :

\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

\(\Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=9\)

\(\Leftrightarrow5+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=9\)

\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)

Khi đó : \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(=\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

Tương tự : \(\left\{{}\begin{matrix}b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)\\c+2=\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{b}+\sqrt{c}\right)\end{matrix}\right.\)

Ta có biến đổi của vế trái :

\(VT=\Sigma\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)

\(VT=\Sigma\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(VT=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\cdot\left(\sqrt{b}+\sqrt{c}\right)^2\cdot\left(\sqrt{c}+\sqrt{a}\right)^2}}\)

\(VT=\frac{2\cdot2}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

\(VT=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=VP\) ( đpcm )

p/s: làm hơi tắt một chút, mong bạn thông cảm.